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Within-year Growth in Math: Implications for Progress-Monitoring Using RTI 

Public schools face challenges when attempting to improve student learning and 

achievement.  Educators implementing school-wide improvement efforts such as Response to 

Intervention (D. Fuchs & Fuchs, 2001), or RTI, attempt to meet the diverse learning needs of 

students performing below expectations.  The enactment of this goal, in part through ongoing 

progress monitoring aimed at characterizing within-year student growth, is the focus of this 

study. 

RTI can be viewed as a grassroots school-wide improvement effort based on results of 

instructional intervention as measured by interim and formative assessments (Black & Wiliam, 

1998).  In RTI, students are classified as "at-risk" of not meeting grade-level expectations 

through interim screening assessments, typically administered seasonally over the academic year.  

Students performing below a district- or school-designated level on interim screeners are 

provided an instructional intervention designed to improve achievement, while simultaneously 

administered frequent formative progress-monitoring probes to track the effect of the 

intervention and ensure adequate gains (D. Fuchs, Mock, Morgan, & Young, 2003).  RTI is 

intended to be dynamic, with students receiving individualized intervention based on their 

learning needs.  The RTI process, of student classification and subsequent intervention and 

progress monitoring, ideally results in students meeting grade-level expectations based on 

meeting the designated performance level.   

In contrast to longer statewide summative exams, formative assessments are intended to 

provide teachers with quick information to guide instructional decisions, rather than to evaluate 

the results of instruction.  Formative assessments must necessarily be shorter, and have multiple 

equivalent test forms, so that teachers can evaluate within-year student growth.  Regardless of 
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these challenges, results of formative assessment are a key basis for the validity of score 

interpretations and instructional decision-making when characterizing student growth within the 

context of RTI (D. Fuchs, et al., 2003).  Thus, the capacity of such assessments to adequately 

capture the within-year growth of students performing below expectations is essential, and is 

specifically of interest to a research base with limited findings around within-year growth in 

math (Foegen, Jiban, & Deno, 2007). 

Research Questions 

In this paper, we use a three-level hierarchical linear model (HLM) to examine the 

growth of fourth grade students who received mathematics progress-monitoring probes during 

the 2010-2011 school year.  We examine growth through an RTI lens to address three questions 

of substantive importance relative to measuring student progress in mathematics: 

1. Can fourth grade student growth in higher-order mathematics skills be adequately 

captured using progress-monitoring assessments administered over a short period of 

time with a limited 16-item scale?  To date, much of the research involving math 

progress-monitoring measures has focused on early developmental skill areas (i.e., 

addition, subtraction, multiplication, and division); however, the measures used in 

this study are comprised of higher-order math skills including problem solving in real 

world contexts.  Given previous research demonstrating strong technical qualities of 

the measures used in this study, (Nese et al., 2010), we hypothesize that significant 

student growth will be observed. 

2. Given that RTI is enacted to raise the achievement of students performing below 

expectations, what is the effect of below grade-level progress monitoring on the 

student?  That is, by the time these students are monitored on grade-level, how did 
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their rate of growth compare to students who were only monitored on grade-level?  

We hypothesize that students who took below-grade progress monitoring forms 

would make significantly different growth compared to those who took solely on-

grade measures.  The former group presumably had lower mathematical knowledge 

and skills at some point to necessitate below-grade progress monitoring, and yet these 

students made enough progress to subsequently be progress-monitored on-grade.  We 

thus had reason to believe that these students would have a higher rate of growth. 

3. Given that RTI is designed around a dynamic system of classification, assessment and 

instruction, what is the effect of the number of progress-monitoring measures a 

student received on the subsequent observed growth?  We hypothesize that students 

administered more progress-monitoring measures would have a lower initial starting 

point and a lower rate of growth given they were apparently not “exited” from the 

intervention group as quickly as students administered fewer measures. 

Methods 

Measures 

Two measures were used in this study: the fourth grade easyCBM® fall math interim 

screener and the fourth grade easyCBM® Number and Operations progress monitoring probes.  

The fall interim screener was not included in any analyses, but was used to help select the final 

sample of students.  All easyCBM® math progress-monitoring forms were designed to be of 

equivalent difficulty with a Rasch model (Alonzo, Anderson, & Tindal, 2009).  The Number and 

Operations probes were selected because they were designed to measure higher-order, more 

complex mathematical skills, which adds to a research base primarily focused on monitoring 
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early developmental areas (see L. Fuchs, Fuchs, & Courey, 2005).  A more complete description 

of the measures used and their technical adequacy will be detailed in the final conference paper. 

Data Collection and Sample 

Existing data from the 2010-2011 school year were extracted from the easyCBM® 

database.  It is important to note that these data were not collected with any sort of experimental 

design, or pre-defined research questions in mind.  Rather, these data reflect teachers' observed 

progress-monitoring practices in the field.  Overall, the data were structured in three levels: Math 

Measures nested in Students nested in Schools.   

We began with a large dataset from multiple states and systematically restricted it to 

obtain a specific analytic sample: students and schools exhibiting practices consistent with 

participation in progress-monitoring and RTI, as conceptualized by Fuchs and Fuchs (2001).  It 

is important to note that because these are extant data, and because we wanted to constrain our 

sample specifically to those participating in RTI, data preparation was complex and lengthy.  A 

condensed description is provided in Table 1, with preliminary analyses limited to the state of 

Oregon.  The conference version of the paper will include data from multiple states, in addition 

to a complete account of data rendering. 

Model Building 

Previous research has shown that within-year reading growth may follow a decelerating 

curvilinear trend (Christ, Silberglitt, Yeo, & Cormier, 2010; Nese et al., 2012).  Little research 

has examined within-year growth in math (Foegen, et al., 2007), however, so we had no a priori 

assumption of linear/nonlinear growth.  We therefore tested linear and quadratic terms at level 1 

(L1).  Because the initial progress monitoring measure for a given student was administered at 

various times throughout the 2010-2011 academic year, time was entered into the model centered 
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by individual student.  That is, students’ initial time point was coded 0, with all subsequent time 

points coded as calendar weeks from the first administration.  Time was coded in weeks to stay 

consistent with progress-monitoring research in reading (e.g., Christ, et al., 2010; Nese, et al., 

2012).  Days within weeks were accounted for by adding decimals to the hundredths place of 

time values. 

 Two predictors of interest were modeled at level 2 (L2).  First, given RTI's focus on 

students performing below grade-level expectations, we examined whether students who 

received below grade-level progress monitoring differed in their intercept and/or slope for on-

grade level data (research question 2).  A dummy vector called below grade-level was created 

and entered at L2 uncentered, with students only receiving on-level monitoring serving as the 

referent group.  Also, given the dynamic nature of individualized assessment and instruction 

inherent to RTI, we added a second variable called count at L2, which was simply a count of the 

number of progress monitoring measures the student received (research question 3). 

 Lastly, there was one predictor of interest, school size, at level 3 (L3).  School size data 

were gleaned from Oregon Department of Education 

(http://www.ode.state.or.us/data/reportcard/reports.aspx) and were entered as a control variable 

because schools ranged considerably in size (from 124 to 596 students).  Analyses were run with 

HLM 7 (Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2011) with full information 

maximum-likelihood estimation.  Residuals for all predictors were investigated for adherence to 

the underlying assumptions of HLM and revealed no violations. 

Results 

Due to space limitations, we describe only our final model, the unconditional growth 

model, based on the preliminary sample and analysis.  Though greater detail of our entire model 
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building process will be provided in the conference version of the paper, overall, HLM model 

building decisions and analyses were based on a premise of adding intended predictors 

sequentially within a given level, and retaining only those parameters that were significant at the 

𝛼 = .05 level.  Additionally, we conducted chi-square test of the change in the deviance statistic 

to compare the fit of higher-level models to finalized baseline models at the lower levels, 

including in cases where parsimony was a reasonable consideration.  Intraclass correlation 

coefficients (ICC) and pseudo-R2 statistics were also calculated to measure the degree of 

dependence at higher levels and amount of variance accounted for by the models, respectively.  

It should be noted that although predictor parameters at higher levels (L2 and L3) were 

investigated in our preliminary analyses, they were found to be nonsignificant predictors of 

student growth in math.  Tables 2 and 3 detail fixed effect and random parameter estimates for 

the unconditional means (null) model (Model 1) and the unconditional growth model (Model 2) 

the final model specified thus far in the study.   

The unconditional growth model, the final model specified in our preliminary analysis, 

was defined as, 

L1: 𝑆𝑐𝑜𝑟𝑒!"# = 𝜋!!" + 𝜋!!" 𝑊𝑒𝑒𝑘𝑠 + 𝜋!!" 𝑊𝑒𝑒𝑘𝑠! + 𝑒!"# 

L2: 𝜋!!" =  𝛽!!! + 𝑟!!" 

𝜋!!" =  𝛽!"! + 𝑟!!" 

𝜋!!" =  𝛽!"! (1) 

L3: 𝛽!!! = 𝛾!!! + 𝑢!!! 

𝛽!!! = 𝛾!"" + 𝑢!"! 

𝛽!!! = 𝛾!"" 
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where at L1 the math score at time t for individual i nested within school j was equal to an 

intercept, 𝜋!!", a linear growth term (weeks and days between assessment occasions), a quadratic 

growth term (weeks and days squared), and unexplained within person variance, 𝑒!"#.  At L2 the 

intercept, 𝜋!!", is predicted by a student level intercept, 𝛽!!!, which varies randomly across 

students, 𝑟!!".  Finally, at L3 the student level intercept 𝛽!!! is predicted by a school level 

intercept, 𝛾!!!, which varies randomly across schools, 𝑢!!!.  Adding the quadratic term to the 

unconditional growth model resulted in significantly better model fit, as indicated by the chi-

square test of the deviance statistic, χ2 = 40.60(7), p < .001.  However, the random effects for the 

quadratic term at L2 and L3 were not significant and thus removed from model. 

Discussion 

Though more detailed results and discussion related to an expanded analytic sample will 

be included in the conference version of this paper, perhaps the most important finding from our 

preliminary analyses is related to capturing student growth in math.  In this study, fourth grade 

students who were progress-monitored made within-year growth that was observable through the 

16-item Number and Operations probes.  Upon first glance, this finding may seem trivial, as one 

would expect students to make growth during the school year.  However, the growth was 

observed in math, with measures targeting non-developmental skills with a fairly limited scale.  

The items from the easyCBM® measures used therefore go beyond assessing students’ fluency 

with algorithms, to assessing students application of the mathematical concepts.  Yet the 

administration time remained quite short, taking roughly 12 minutes 

(http://www.rti4success.org/tools_charts/popups_progress/easyCBMMath_area.php). Anderson, 

Lai, Alonzo, and Tindal (2011) showed that the bulk of easyCBM® math items were targeted at 

students performing below expectations.  Thus, the results of our study extend the findings of 
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Anderson and colleagues, suggesting that efficiently administered progress-monitoring measures 

are not only sensitive to the achievement of students performing below expectations at a single 

time point, but also to improvements over time.  Additionally, these findings add substantively to 

the limited empirical research base around within-year growth in mathematics (Foegen, et al., 

2007). 

In addition to providing greater detail regarding the easCBM® interim and formative 

measures, data collection/preparation, and model building and specification, we plan to follow a 

few additional steps in preparing the conference version of the paper.  First, to broaden 

generalizability, the analytic sample will expand to include students and schools from multiple 

states.  Secondly, a covariate for when students began being progress-monitored will be added at 

L1 as the initial monitoring point ranges considerably in the preliminary sample. 
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Table 1 
Data Cleaning Methods by Level of Analysis 

Level of analysis/ 

Cleaning step 
Cleaning method 

L1: Measures  

1 Only data from Number and Operations probes included 

2 Only data from 4th grade measures included 

L2: Student  

3 Student was in fourth grade during the 2010-2011 school year 

4 Student had a valid fall benchmark score and scored below the 50th 
percentile 

5 Student received a minimum of two progress monitoring measures 

L3: School  
6 School based in Oregon 

7 School had at least 4 students receiving progress-monitoring 

Note. Study began with a raw data file of 4,375 students. Restricting the sample to only students 

with a valid fall benchmark measure resulted in a sample of 2,973, of which 1,799 scored below 

the 50th percentile. Restricting the analysis to only students and schools in Oregon resulted in a 

sample of 1,137. Eliminating schools from step 7 above resulted in 1,064 students. Restricting 

the sample to only grade 4 data resulted in 1,021 students, 950 of which had received a progress-

monitoring probe in Numbers and Operations. Finally, restricting the data to only students with 

at least 2 progress-monitoring measures resulted in the final sample of 1,990 data points nested 

in 573 students nested in 33 schools. 
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Table 2 

Fixed Effects Estimates for Unconditional Means and Unconditional Growth Models of Within-

year Student Growth in Mathematics 

Parameter Model 1 Model 2 

Intercept (𝜋!!") 9.63*** (0.20) 9.06*** (0.18) 

Level 1 (time)   

Weeks (𝜋!!") -- 0.13*** (0.02) 

Weeks2 (𝜋!!") -- -0.004*** (0.00) 

Level 2 (student)   

Count (int) -- -- 

Count (linear) -- -- 

Count (quad) -- -- 

Level (int) -- -- 

Level (linear) -- -- 

Level (quad) -- -- 

Level 3 (school)   

Size (int) -- -- 

Size (linear) -- -- 

Size (quad) -- -- 

Note. Fixed effect estimates for: count (number of progress-monitoring measures the student 

received), level (students who received below grade-level progress-monitoring), and size 

(number of students in the schools). *p < .05, **p < .01, ***p < .001. 
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Table 3 

Random Parameter Estimates for Unconditional Means and Unconditional Growth Models 

Within-year Student Growth in Mathematics 

Parameter Model 1 Model 2  

Level 1 

Intercept (𝑒!"#) 4.79 (0.18) 3.72 (0.16) 

Level 2   

Int (𝑟!!") 2.57*** (0.26) 2.67*** (0.33) 

Weeks (𝑟!!") -- 0.001* (0.00) 

Level 3   

Int (𝑢!!!) 1.00*** (0.33) 0.71*** (0.27) 

Weeks (𝑢!"!) -- 0.01*** (0.00) 

-2*log likelihood 9373.45 9095.30*** 

Note. Significance reported for the -2*log likelihood are based on the chi-square test of deviance, 

whereby the given model was compared to the baseline model established at the previous level. 

For example, Model 2 (unconditional growth) was compared to Model 1 (unconditional means), 

using the chi-square test of the change in the deviance statistic. *p < .05, **p < .01, ***p < .001.  

 


