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Abstract 

Unidimensionality and local independence are two common assumptions of item 

response theory models. The former implies that all items measure a common latent trait, 

while the latter implies that item responses are independent, conditional on respondents’ 

location on the latent trait. Yet, few tests are truly unidimensional. When minor 

dimensions are present, test items may display dependencies, which in turn may result in 

misestimated model parameters and inflated estimates of reliability. In this paper, we 

used a two-stage, two-sample approach to empirically explore and control for minor 

dimensions in a CCSS-aligned math test. We compared a unidimensional model with two 

multidimensional models: one arrived upon by theory, and one arrived upon by 

preliminary exploratory analyses (with the first sample). We found evidence of minor 

dimensions, with the empirical model displaying the best fit to the data. However, 

parameter estimates across models were all very similar.   
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Exploring the Item Factor Structure of a CCSS-Aligned Middle School 

Mathematics CBM 

 Standard applications of item response theory (IRT) assume that all items within 

the instrument measure a common latent trait, and that item responses are uncorrelated 

after accounting for respondents’ location on the latent trait. The former assumption is 

generally referred to as the unidimensional assumption of IRT, while the latter is referred 

to as the local independence assumption. The two assumptions are related; if students’ 

responses are a function of more than one latent trait (i.e., the test is multidimensional), 

then item responses will correlate as a function of their location on the unmodeled latent 

trait(s). Violation of the local independence assumption can result in a distortion of the 

item, person, and test parameter estimates (DeMars, 2006; Kahraman, 2013; Sireci, 

Thissen, & Wainer, 1991; Wainer, 1995). As Zenisky, Hambleton, and Sireci (2002) 

note, “items that do not make a unique contribution to an assessment do not increase 

construct representation and exacerbate any construct-irrelevant factors that may be 

associated with an item, such as prior familiarity with the item context” (p. 291). The 

estimated reliability of the test also may be inflated (Sireci et al., 1991), and when local 

dependence is high, the scale can lack construct validity, as ability estimates (theta) may 

depend upon the unmodeled latent trait. 

 It can be argued that few tests are “truly” unidimensional, with nearly all 

assessments having both major and minor dimensions (Bolt & Lall, 2003; Nandakumar, 

1991).  However, if the relation among items is dominated by a single latent trait, then 

the minor dimensions may result in negligible residual correlations among items (local 

dependence). The impacts on item or person parameter estimates may then be sufficiently 
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small so as to be ignorable (Nandakumar). Indeed, a common goal in test development is 

to construct tests that are “essentially” unidimensional (Sick, 2010). If multiple constructs 

are of interest, then multiple (construct-unique) tests are developed. 

Some (e.g., Nichols & Sugrue, 1999) argue that many constructs are too complex 

to assume a single underlying dimension, even within individual items. Yet, within these 

contexts, interest generally still lies with one primary dimension. For example, a 

mathematics item assessing students’ ability to solve “real-world” problems may require 

mathematical skills (e.g., logic, computation, etc.) but also reading comprehension skills. 

Students’ mathematics skills would clearly be the targeted construct, but their reading 

comprehension skills would relate to their observed response. The reading 

comprehension skills would therefore be a “nuisance” dimension, obstructing accurate 

estimation of students’ mathematics ability (as well as item and test parameters). Similar 

items requiring reading comprehension skills would likely have some degree of local 

dependence, after accounting for students’ location on the latent Math trait. 

There are multiple ways to account for dependencies among items, with perhaps 

the most simplistic being item deletion. Alternatively, items displaying strong 

dependencies can be treated as a single polytomous item, with students’ scores on the 

multiple dependent items summed (Cook, Dodd, & Fitzpatric, 1999). The difficulty of the 

newly created polytomous item is then calibrated (along with all other items) with an 

appropriate IRT model (e.g., partial credit model, graded response model, etc.). The most 

general method is to model additional latent traits (i.e., dimensions). Students’ observed 

response is then assumed to be a function of their location on each of the latent traits, and 

information is not lost as a result of collapsing across or deleting items.  
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 In many contexts, theoretical reasons exist why items may be presumed to 

correlate after accounting for the primary dimension of interest. For example, groups of 

similar item types, measuring subcomponents of the primary trait or with similar stimuli, 

may all correlate for reasons other than the primary trait of interest. In other contexts, 

however, there may be little theoretical reason to presume items exhibit local item 

dependence. In these cases, exploratory factor analyses (EFA) may help determine the 

underlying dimensions of the items, and whether a single latent trait adequately accounts 

for the observed relations. If dimensions outside the primary dimension are found, they 

can be modeled as nuisance factors to ensure local item independence. It is important to 

note that even if a unidimensional structure is the goal in test development, multiple 

dimensions are essentially always plausible, and it is important to investigate the 

underlying structure of the items so that nuisance dimensions can be controlled, and the 

local independence assumption is not violated.  

 In this paper, we propose using a multi-staged process for large samples to 

evaluate test dimensionality and arrive upon a model that parsimoniously and adequately 

accounts for the residual correlations among items beyond the primary trait (if any exist). 

We use multimodel inference (see Burnham & Anderson, 2004) to select between 

competing theoretically and empirically derived models, using two randomly selected 

samples from a large dataset. The first sample is reserved for exploring the item-factor 

structure, while the second tests competing models.  

We illustrate our method with interim/formative middle school mathematics 

measures in each of Grades 6-8, developed to align with the Common Core State 

Standards (CCSS). Theoretically, all tests should measure a general Math trait, but 
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because the middle school math CCSS are composed of five domains, items may exhibit 

domain-specific dependencies beyond the general Math trait. Alternatively, items may 

exhibit dependencies because of unexpected artifacts of the items (e.g., similar stimuli, 

requiring similar non-construct relevant background knowledge, etc.). We compare the fit 

of a unidimensional model with two multidimensional models: an a priori model based 

on theory and one developed by empirical means, through preliminary EFAs.  

It is important to note that differences in individual test forms (specific items, 

presence or absence of particular item clusters, etc.) meant that we did not necessarily 

expect consistent results for the “best” model across test forms at the onset of this study. 

Consistent models may be desirable, and future revisions to the forms can be made such 

that a single model consistently represents the best fit to the data across test forms. 

Nevertheless, the current study uses existing test forms currently in widespread use rather 

than forms constrained specifically for the purpose of this research. Our analyses 

represent the first exploration into the dimensionality of the items, and thus consistent 

models were not necessarily expected. 

Methods 

Participants and Sample 

 This study utilized a large extant sample from the easyCBM© database. Analyses 

were conducted with the winter benchmark measure in each of Grades 6-8 from the 2013- 

2014 school year. As described in the Analyses section below, the sample was randomly 

split into two groups for exploring item dimensionality and comparing competing 

models. Sample demographics are displayed by the two random subgroups in Tables 1-3 
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for Grades 6-8, respectively. Note that demographic variables are presented for 

descriptive purposes only, and were not included in any analyses.  

Measures  

 The easyCBM© CCSS Math tests are comprised of 45 items. Approximately 6 

items measure each of the 5 Common Core State Standards (CCSS) in math in each grade 

(30 items), 5 align with that grade level’s National Council of Teachers of Mathematics 

(NCTM) Focal Point Standards, 5 align to prior-grade CCSS, and 5 align to subsequent-

grade CCSS. The exception was Grade 8, which included roughly 7 items aligning to 

each of the 5 CCSS, and no items from the grade above. From the 45-item test, we 

included information from only those items that targeted CCSS grade-level standards in 

this study. 

Wray, Lai, Alonzo, and Tindal (2014) reported Cronbach’s alpha ranged from .92 

to .95 across Grades 6-8. Split-half reliability ranged from .80 to .87 for the first half and 

.92 to .95 for the second half, while the correlation between the split-half forms ranged 

from .62 to .73.  Anderson, Rowley, Alonzo, and Tindal (2014) explored the relation 

between students’ scores on the winter benchmark and the Stanford Achievement Test, 

Tenth Edition (SAT-10). The authors used a relatively small sample from one district in 

the Pacific Northwest, ranging from 63-67 students per grade. The bivariate correlation 

between the measures ranged from .75 to .82, while simple linear regression analyses 

indicated that the easyCBM© winter benchmark accounted for 56%-67% of the variance 

in students’ SAT-10 scores, providing evidence of the concurrent validity of the CCSS 

Math assessments. 

Analyses 
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 Prior to analysis, we randomly selected two samples from the full dataset (see 

sample sizes in Tables 1-3). We used the first sample to conduct binary exploratory factor 

analyses (EFAs). Tetrachoric correlation matrices were used to protect against arriving 

upon item difficulty related factors, rather than substantive ones. Three competing 

models were then fit with Sample 2. The first model was informed by the EFA results, 

and is referred to as the empirically derived nuisance factor (EDNF) model. For this 

model, all items were specified as loading on a dominant trait. However, items found to 

load on minor dimensions during the EFA models were specified as loading on two 

dimensions (i.e., the primary trait and a nuisance factor). The EDNF model was 

compared against a unidimensional model, and a theoretical bifactor model, where each 

item loaded on a primary trait and a domain-specific trait (according to the CCSS domain 

the item was written to measure). Note that the EDNF was equivalent to the bifactor 

model, but the “testlets” were determined through the EFA models. A 2PL IRT model 

was fit for each model, with item difficulty and discrimination parameters estimated. The 

specifics on the fit of the models estimated are described next. 

 Exploratory Factor Analyses. Perhaps the greatest challenge to EFA is 

determining the number of factors to retain (Horn & Engstrom, 1979). A number of 

methods have been proposed to determine the underlying number of factors. For the 

purposes of this study, three tests were primarily weighed for determining the number of 

factors: (a) Parallel Analysis [PA; Horn, 1965], (b) the minimum average partial test 

[MAP; Velicer, 1976], and (c) the Very Simple Structure test [VSS; Revelle & Rocklin, 

1979]. A priori, we determined that conflicting recommendations on the most appropriate 

number of factors to retain across tests would be moderated by theoretical rationales.  
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 PA is a simulation-based method, by which the eigenvalues extracted from the 

raw correlation matrix are compared with eigenvalues from simulated normal random 

samples with similar attributes to the observed sample (i.e., sample size and number of 

variables; Ledesma & Valero-Mora, 2007). The number of factors to be retained 

corresponds to the number of factors in the observed data with eigenvalues greater than a 

specified level (e.g., mean, median, 5th percentile, 95th percentile) of the eigenvalues 

derived from the simulated data. PA is marginally influenced by sample size, because 

“for large samples the eigen values of random factors will tend towards 1” (Revelle, 

2015, p. 59). This feature may lead to overestimating the number of factors to retain. In 

this study, eigenvalues from the observed data were compared with mean eigenvalues 

from the simulated data. However, because of the large sample size, parallel analysis was 

weighed less heavily than the MAP or VSS tests (described below). 

 The MAP test (Velicer, 1976) is based on the matrix of partial correlations. 

Factors are partialed from the matrix, and the average squared partial correlation is 

computed. The “ideal” number of factors corresponds to the number of factors at which 

the average partial is minimized. The MAP criterion decreases initially but will begin to 

rise at the point at which unique variance, rather than common variance, begins being 

partialed. MAP “provides an unequivocal stopping point for the number of factors by 

separating the common and unique variance and retaining only those factors that consist 

primarily of common variance” (Garrido, Abad, & Ponsoda, 2011, p. 3). The MAP test 

has been shown to be quite accurate (Zwick & Velicer, 1986) and is a consistently 

recommended practice (Henson & Roberts, 2006; Patil, Singh, Mishra, & Donavan, 

2008). 
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 The VSS test is a method of determining the minimum number of interpretable 

factors. VSS compares the extracted factor solution to a simple structure. That is, an 

initial factor solution is extracted, and all but the highest factor loading in each row of the 

pattern matrix is set to zero. The extent to which the factor structure fits the simple 

structure is then evaluated. VSS tests “how well the factor matrix we think about and talk 

about actually fits the correlation matrix” (Revelle & Rocklin, 1979, p. 407, emphasis in 

original). VSS can be calculated for two item complexities (i.e., items load on one or two 

factors), with the optimal factor structure reported for each. All analyses were conducted 

with the R statistical software (R Core Team, 2014) using the psych package (Revelle, 

2014).  

 All models were fit with maximum likelihood estimation, with an oblique 

rotation. Tetrachoric correlation matrices were used to protect against arriving upon item 

difficulty related factors, rather than substantive ones. Pattern matrices were evaluated to 

give theoretical meaning to the extracted factors. Nuisance factors were only specified 

when the groups of items loading on the minor dimension made theoretical sense. 

We used a general rule of thumb of factor loading on the minor dimension greater than or 

equal to .2 as being worthy of further investigation. However, these decisions were also 

moderated by theory. For example, if an item loaded at .22, but also loaded heavily on the 

primary dimension and did not theoretically align with other items on the minor 

dimension, the item was not included in the nuisance factor. 

 Item Response Models. For each grade and measure, theoretical IRT models 

were tested with Sample 2 and compared to the EDNF model. Unidimensional IRT 

models were specified such that the log likelihood of a correct response was a function of 
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(1) 

item characteristics and students' location on a single, continuous latent variable, referred 

to generally as “ability”. The 2PL IRT model estimates two item characteristics: 

difficulty and discrimination. The model is defined as 

𝑃 𝑈!" = 1 𝜃! ,𝑎! , 𝑏! , = !!!(!!!!!)

!!!!!(!!!!!)
 

where 𝜃! represents the estimated ability of student j, and 𝑎! and 𝑏! are the discrimination 

and difficulty of item i, respectively. In essence, the log odds of students’ correctly 

responding to an item are driven by the difference between their estimated ability, 𝜃!, and 

the difficulty of the item 𝑏!. Log odds are estimated as the ratio between the odds of a 

correct versus incorrect response. The discrimination parameter represents the slope of 

the item characteristic curve – i.e., the rate at which the probability of a correct response 

changes as theta increases. Items with lower discrimination values are weighted less in 

the estimation of theta than those with higher values, as the difference between the item 

difficulty and the students’ ability is multiplied by the estimated discrimination of the 

item.  

 Figure 1 represents a visual schematic of a unidimensional IRT model in the form 

of a path diagram. In this formulation, item responses are assumed generated by latent 

trait 𝑦!∗, with threshold 𝜏!. For each item, i,  

𝑦! =
1  if  𝑦!∗ ≥ 𝜏! ,
0  if  𝑦!∗ < 𝜏!

   (2) 

where 𝑦! represents the observed response (see Kamata & Bauer, 2008). Item difficulties 

are estimated as the location of item i along latent trait 𝑦!∗. Person ability, 𝜃, is assumed 

normally distributed with a mean of zero and variance 𝜎. The factor loadings represent 

the item discriminations. The unidimensionality and local independence assumptions of 
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the model are also clearly displayed, as all items are specified as measuring a single latent 

trait (unidimensionality) and the residual variances are uncorrelated (local independence). 

 Multidimensional models represent a generalization of unidimensional models, 

where the probability of students responding correctly to an item is driven by students’ 

ability on multiple dimensions, or factors, 𝜃!!…𝜃!". Multidimensional IRT models may 

have simple or complex structures. Complex structures imply that the probability of a 

student correctly responding to an item is driven by a weighted combination of multiple 

dimensions, while simple structures imply that the probability of a correct response is a 

function of only one of multiple possible dimensions (Antal, 2007). Complex structures 

include parameter estimates for items on each dimension (i.e., discrimination and 

difficulty).  

The multidimensional models that were fit in this study all represented examples 

of the bi-factor testlet model (see DeMars, 2006; Rijmen, 2010), which accounts for the 

residual dependencies among items by estimating additional orthogonal latent traits. 

Figure 2 displays a path diagram of a general bi-factor testlet model. In this model, all 

items are specified as measuring the general Math dimension, but nuisance factors (NF) 

are also specified for specific groups of items. The bi-factor testlet model is thus a 

factorially complex multidimensional IRT model, as individual items are specified as 

loading on multiple dimensions. All NFs were specified as orthogonal to the primary trait 

and with other NFs. The variance in NFs is generally not interpreted, and relates to 

common variance among the specified items after accounting for the primary trait. 

During preliminary model investigation, we fit a fully unrestricted model, with all 

item discriminations estimated on each latent trait. However, we found that the model 
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was overly complex, as discrimination values for a few items within each test form were 

estimated with very low precision (e.g., 𝛼 = 2.29, SE = 1.87). Imprecise estimation of 

discrimination parameters could have serious consequences on the estimation of theta, 

given that it serves as a weighting parameter (i.e., items with higher discriminations are 

weighted more heavily in ability estimation). To simplify the model, we imposed an 

equality constraint on the discrimination parameter for all items within a NF, while the 

discrimination parameter on the primary trait remained freely estimated. In essence, each 

NF was estimated with a 1 PL IRT model, while the general trait was estimated with a 2 

PL IRT model. It is important to note that discrimination parameters between NFs were 

allowed to vary, but were constrained to be equal within NFs. The constraint helped 

parameter estimation, with the largest standard error being 0.11 (with most being around 

.07). 

Model Selection 

When comparing competing models, we relied primarily on Akaike’s information 

criteria (AIC) and Bayesian information criteria (BIC). Differences between models were 

compared using general rules of thumb outlined by Burnham and Anderson. Specifically, 

differences between competing models of 10 or more points provided “essentially no 

support” (p. 271) for the model with the higher value. Both AIC and BIC are 

transformations of the log-likelihood that include penalties for the number of estimated 

parameters. The indices often converge upon a common model, but BIC tends to be the 

more conservative indicator (i.e., includes a greater penalty for the number of parameters 

estimated). If the items were locally independent prior to modeling NFs, then the NFs 

would not contribute to the model, and information criteria should preference the more 
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parsimonious model (given the penalization for model complexity). However, if items 

were locally dependent, then the NF would represent the common residual variance, and 

the items would then achieve local independence, conditional on the multiple latent traits 

(and information criteria should preference the more complex model). 

This study compared “raw” and “refined” unidimensional IRT models with two 

muldimensional models: one with empirically derived NFs (EDNF), and one with 

theoretically derived NFs. The raw models included all items, and the refined models 

included only items that discriminated well on the primary trait. Items discriminating 

around 0.40 or lower were investigated for their contribution to the model. For the 

EDNF, items found to load on minor dimensions during preliminary EFAs were specified 

as loading on both the Math and minor dimension. The EDNF model thus included many 

items that were measured only by the primary response variable, and a few items that 

were measured by both the primary and NF latent traits. The theoretical model included 

all items loading on a primary and domain-specific latent trait. The Domain dimensions 

included domain-specific variance, while the Math dimension included across-domain 

variance. All models were estimated with the Mplus software, Version 7.1 (Muthén & 

Muthén, 1998-2012) using maximum likelihood estimation with standard errors 

approximated from first-order derivatives (MLF).  
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Results 

Sample 1: Exploratory Factor Analyses  

 The various tests of factor structure generally displayed similar but not identical 

evidence for the optimal number of dimensions underlying the CCSS Math items. Across 

measures, the MAP test and VSS test with item complexity one both suggested a 

unidimensional structure. For item complexity two, the VSS suggested two factors for all 

measures. PA results generally suggested a large number of factors, with nine factors 

indicated for Grade 6, five indicated for Grade 7, and eight to ten for all other measures. 

These results appeared to be largely due to sample size. Indeed, when the analysis was re-

run for each measure with the same tetrachoric correlation matrix, but with an assumed 

sample size of 500 (rather than ~5,000), PA suggested 1-3 factors as optimal. Taken 

together, these results suggested between one and three factors should be extracted for 

each measure.  

 Across all test forms, items loaded primarily on a single dominant dimension. 

However, each test form also included at least one substantively meaningful minor 

dimension. For Grade 6, the 2-factor model (one primary dimension and one minor 

dimension) included only five items loading on the minor dimension, all of which were 

written to measure the Number Systems domain, Standards 1, 3, and 5. The 3-factor 

model (one primary dimension and two minor dimensions) included items loading on the 

same two factors, but an additional four items loading on the third dimension. These 

items were all written to two standards, Expressions and Equations, Standard 5, and 

Number Systems, Standard 4.  
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For Grade 7, the 2-factor model included 5 items loading on the minor dimension, 

all of which measured Number Systems, Standards 1 and 2. The 3-factor model included 

an additional 13 items loading on the second minor dimension, but the items were 

dispersed between all domains. Visual inspection of the items revealed no clear reason 

that the items should display local dependence with a unidimensional model (i.e., little 

overlap in item stimulus, content, etc.). The EDNF for Grade 7 was therefore limited to 

only the model with a single NF, as the model with two NFs made little theoretical sense. 

The pattern observed in Grade 7 was also observed in Grade 8, with the model including 

a single NF (2-factor model) appearing logical, while the model with two NFs (3-factor 

model) made little theoretical sense. We thus proceeded with the 2-factor model, which 

included 6 items on the minor dimension, all of which were written to measure the 

Number System domain, Standards 1 and 2 (NS1-2).  

Sample 2: Item Response Models  

Information criteria for each of our competing models are reported for each grade 

in Table 4. Fit criteria are reported for the raw and refined models for each of Grades 6-8. 

Across all grades, the multidimensional models universally displayed better fit to the data 

than the unidimensional model. Information criteria indicated the EDNF model displayed 

the best fit to the data at Grades 6 and 7, while AIC and BIC provided conflicting 

evidence at Grade 8. The model BIC, which includes the greater penalty for model 

complexity, indicated that the more parsimonious EDNF model with a single NF 

displayed the best fit to the data, while AIC indicated that the bifactor model displayed 

the best fit. Across all models, the refined models included the elimination of the same 
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items. Two items were removed at Grade 6, while one item was removed at Grade 8, and 

no items were removed at Grade 7. 

Item discriminations and difficulties on the primary trait for the three competing 

models are displayed for the Grade 6 measure in Table 5. For the sake of brevity, we 

present only the first 15 items from one test form1. Overall, the estimates across models 

were quite similar, but a few items did display some differences. For example, Item 5 

(displayed in bold font), which was written to measure the second standard in the 

Geometry domain, had an estimated discrimination of 1.46 with the unidimensional 

model, but 1.58 with the bifactor model. Similarly, the estimated difficulty of Item 7, 

which was written to measure the fourth standard in the Geometry domain, was estimated 

at 2.04 for the bifactor model, but 1.93 and 1.94 for the unidimensional and EDNF 

models, respectively. These items displayed the largest overall differences in each 

corresponding item parameter estimate in Grade 6. The largest difference in the estimated 

discrimination of items in Grades 7 and 8 was 0.06 and 0.13, respectively, while the 

largest difference in terms of the estimated difficulty was 0.11 and 0.20 logits, 

respectively.  

The relation between person estimates (i.e., theta) across the three models is 

displayed in Figure 3. The univariate distribution of the theta estimates is displayed for 

each respective model along the diagonal of the figure, while bivariate relations are 

displayed in the lower triangle and Pearson correlation coefficients are displayed in the 

upper triangle. An equivalent plot is displayed for item discrimination estimates in Figure 

4. As can be seen, the relation between estimates across competing models was very 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Please contact the lead author for complete tables. 
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high. Indeed, the correlation between estimates was .99 across all models for all 

parameters.  

Discussion 

 The purpose of this study was to explore the dimensionality of interim/formative 

middle school mathematics measures. We used a two-staged, two-sample approach where 

theory and empirical evidence were balanced to arrive upon a final model using 

multimodel inference (see Burnham & Anderson, 2004). The results of this process 

suggest that the model with nuisance factors established through preliminary EFA models 

(i.e., the EDNF model) provided the best fit to the data. However, follow-up 

investigations indicated that across models, parameters were being estimated very 

similarly. While the EDNF was perhaps the best model from a purely statistical 

perspective, the practical takeaways from all models would likely be equivalent. In this 

case, then, the more parsimonious unidimensional model would likely be preferred due to 

model parsimony and ease of interpretation. 

Many tests are designed to be unidimensional, with items intended to measure a 

single latent trait. Yet, it is important that thorough investigations into the dimensionality 

be conducted. While we found no practical difference across our models in parameter 

estimates, we did find evidence for minor dimensions. Across grades, items within the 

Number Systems domain quite consistently loaded on a minor dimension. In our specific 

application, these minor dimensions appeared to have minimal influence on the scale as a 

whole, but this is not always the case (Kahraman, 2013). Perhaps the primary reason for 

the minor dimensions having such little influence was that the ratio of multidimensional 
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to unidimensional items was very small across all models. Parameter estimates between 

models would likely differ more as the number of multidimensional items increased. 

Local independence is one of the foundational assumptions of IRT. Violations of 

this assumption can have numerous deleterious effects on the measurement model 

(DeMars, 2006; Sireci et al., 1991; Wainer, 1995; Zenisky et al., 2002). When 

unidimensional IRT models are fit to tests that include minor dimensions, items may 

exhibit dependencies as a result of the unmodeled dimensions. When the number of items 

loading on minor dimensions is small, such as was observed here, our results suggest that 

a unidimensional model will likely still provide adequate parameter estimates, even if 

information criteria suggest that multidimensional models may display better fit to the 

data. In other words, when the number of items loading on minor dimensions is small, the 

data may be essentially unidimensional (Nandakumar, 1991). Essential 

unidimensionality, however, should not be assumed even if it is the goal; rather the 

dimensionality of the assessment should be investigated to confirm the theoretical model. 

Limitation and Directions for Future Research 

 Perhaps the primary limitation of this research was the use of extant data. While 

the overall sample was very large, and two random samples were selected from the full 

sample, the specific contexts in which the data were collected are unknown. Along these 

lines, the fidelity with which the testing procedures were followed, or the motivation of 

the students for correctly responding to the items, is also unknown. The easyCBM© 

measures used in this study were all designed to be administered either by a computer, or 

via paper-pencil. The assessment protocols are designed to enable assessors to provide 
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the assessment with minimal training. Computer administration helps to ensure 

standardization, but the extent to which all protocols were followed is unknown. 

It is also worth noting that the models fit in this study should only be interpreted 

provisionally. It is quite possible that the “final” or “optimal” model fit for each measure 

was not invariant across key student demographic groups (e.g., English language 

learners, specific disability categories, racial/ethnic categories, etc.), which would suggest 

the test could be functioning differently by groups. In this case, revisions would likely 

need to be made to ensure invariance.  

Conclusions  

 In our exploration into the dimensionality of CCSS-aligned middle school 

mathematics measures, we found that person and item parameter estimates were 

essentially equivalent across unidimensional and two multidimensional IRT models. 

Given the equivalence of the models’ parameter estimates, the relatively parsimonious 

unidimensional model was preferred. However, the two-stage two-sample methodology, 

which used preliminary EFA models to evaluate dimensionality prior to fitting the 

multidimensional model, appeared to show some promise. From a purely statistical 

perspective, information criteria generally indicated that the model with empirically 

derived nuisance factors displayed the best fit to the data. In applications where more 

multidimensional items exist, this method may help to identify and control for the minor 

dimensions. However, our results also suggest that if the number of multidimensional 

items is small, then a unidimensional model may suffice. 
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Table 1 

Sample Demographics: Grade 6 

Variable Sample 1 Sample 2 
Total N size 4,149 4,149 
Gender (n/%) 

Female 
Male 

 
1995 
2043 

 
(48.1%) 
(49.2%) 

 
1995 
2043 

 
(48.1%) 
(49.2%) 

Race/Ethnicity 
White 
Amer. Ind. or Alaska Nat. 
Asian 
Black or Afr. Am. 
Nat. Hawaiian or Other Pac Isl. 
Two or more 
Unknown 

 
2057 

123 
100 
189 

19 
82 

1173 

 
(49.6%) 

(3.0%) 
(2.4%) 
(4.6%) 
(0.5%) 
(2.0%) 

(28.3%) 

 
2057 

123 
100 
189 

19 
82 

1173 

 
(49.6%) 

(3.0%) 
(2.4%) 
(4.6%) 
(0.5%) 
(2.0%) 

(28.3%) 
Ethnicity 

Not Hispanic-Latino 
Hispanic-Latino 
Unknown  

 
2281 

549 
804 

 
(55.0%) 
(13.2%) 
(19.4%) 

 
2281 

549 
804 

 
(55.0%) 
(13.2%) 
(19.4%) 

ELL 
Yes 
No 

 
927 

2993 

 
(22.3%) 
(72.1%) 

 
927 

2993 

 
(22.3%) 
(72.1%) 

Disability  
Yes 
No 

 
1182 
2672 

 
(28.5%) 
(64.4%) 

 
1182 
2672 

 
(28.5%) 
(64.4%) 

Note. Percentages not summing to 100 represent instances of missing data. 
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Table 2 

Sample Demographics: Grade 7 

Variable Sample 1 Sample 2 
Total N size 3,522 3,521 
Gender (n/%) 

Female 
Male 

 
1698 
1726 

 
(48.2%) 
(49.0%) 

 
1698 
1726 

 
(48.2%) 
(49.0%) 

Race/Ethnicity 
White 
Amer. Ind. or Alaska Nat. 
Asian 
Black or Afr. Am. 
Nat. Hawaiian or Other Pac Isl. 
Two or more 
Unknown 

 
1633 

89 
74 
93 

7 
45 

1152 

 
(46.4%) 

(2.5%) 
(2.1%) 
(2.6%) 
(0.2%) 
(1.3%) 

(32.7%) 

 
1633 

89 
74 
93 

7 
45 

1152 

 
(46.4%) 

(2.5%) 
(2.1%) 
(2.6%) 
(0.2%) 
(1.3%) 

(32.7%) 
Ethnicity 

Not Hispanic-Latino 
Hispanic-Latino 
Unknown  

 
1936 

415 
718 

 
(55.0%) 
(11.8%) 
(20.4%) 

 
1936 

415 
718 

 
(55.0%) 
(11.8%) 
(20.4%) 

ELL 
Yes 
No 

 
761 

2580 

 
(21.6%) 
(73.3%) 

 
761 

2580 

 
(21.6%) 
(73.3%) 

Disability  
Yes 
No 

 
1073 
2217 

 
(30.5%) 
(62.9%) 

 
1073 
2217 

 
(30.5%) 
(62.9%) 

Note. Percentages not summing to 100 represent instances of missing data. 
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Table 3 

Sample Demographics: Grade 8 

Variable Sample 1 Sample 2 
Total N size 3,277 3,277 
Gender (n/%) 

Female 
Male 

 
1517 
1658 

 
(46.3%) 
(50.6%) 

 
1535 
1640 

 
(46.8%) 
(50.0%) 

Race/Ethnicity 
White 
Amer. Ind. or Alaska Nat. 
Asian 
Black or Afr. Am. 
Nat. Hawaiian or Other Pac Isl. 
Two or more 
Unknown 

 
1482 

79 
72 

104 
13 
58 

1041 

 
(45.2%) 

(2.4%) 
(2.2%) 
(3.2%) 
(0.4%) 
(1.8%) 

(31.8%) 

 
1419 

70 
85 

115 
7 

46 
1075 

 
(43.3) 

(2.1%) 
(2.6%) 
(3.5%) 
(0.2%) 
(1.4%) 

(32.8%) 
Ethnicity 

Not Hispanic-Latino 
Hispanic-Latino 
Unknown  

 
1773 

320 
702 

 
(54.1%) 

(9.8%) 
(21.4%) 

 
1760 

341 
707 

 
(53.7%) 
(10.4%) 
(21.6%) 

ELL 
Yes 
No 

 
751 

2360 

 
(22.9%) 
(72.0%) 

 
813 

2292 

 
(24.8%) 
(69.9%) 

Disability  
Yes 
No 

 
1013 
2049 

 
(30.9%) 
(62.5%) 

 
1050 
2001 

 
(32.0%) 
(61.1%) 

Note. Percentages not summing to 100 represent instances of missing data. 
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Table 4 

Information Criteria for Competing Models 

Model Raw model Refined model 
AIC BIC AIC BIC 

Grade 6      
Unidimensional 137422.00 137800.20 126758.09 127111.07 
Bifactor 137211.25 137620.96 126519.87 126904.37 
EDNF: 1NF 137247.96 137632.46 126586.24 126945.52 
EDNF: 2NF 136973.49 137364.29 126314.02 126679.61 

Grade 7      
Unidimensional 114012.29 114381.37 - - 
Bifactor 113863.01 114262.84 - - 
EDNF: 1NF 113789.07 114164.30 - - 

Grade 8      
Unidimensional 126353.98 126779.79 126519.60 126933.24 
Bifactor 126186.93 126643.16 121970.08 122414.14 
EDNF: 1NF 126201.58 126633.47 121987.28 122407.01 

Note. Models with the lowest information criteria are displayed in bold font. 

EDNF = empirically derived nuisance factors. 
 

 


