A Two-Step Growth Mixture Model With Distributional Changes Over Time

Joseph F. T. Nese University of Oregon

Akihito Kamata Southern Methodist University

2/12

600

500

400

300

Frequency

Purpose

Introduce and apply a two-step growth mixture model (GMM) approach for modeling repeated measures with distributions changing over time.

Two-Step GMM Approach

- I. Apply a 2-latent-class mixture zero-inflated Poisson (ZIP) regression model to the initial measurement occasion (entry) and related entry covariates to identify two classes:
 - 1) Zero Class, and
 - 2) Zero & Above Class.
- II. Apply a GMM for count data to all measurement occasions for each of the two classes estimated in step-1.
 - We used the estimated class probabilities of the corresponding class as sampling weights (similar to propensity score weighting).

Step-1

- ZIP regression of initial measurement occasion (entry) on related entry covariates
 - 1) Zero Class: students who could only assume a zero score on initial occasion
 - 2) Zero & Above Class: students who could assume scores zero or higher

$$Y_i \sim \begin{cases} 0 & \text{with probability } p \\ Poisson(\lambda_i) & \text{with probability } 1-p \end{cases}$$

Where Y_i is the observed initial occasion score for the ith student

$$\ln(\lambda_i) = \begin{cases} b_0^{(1)} + b_1^{(1)} x_{1i} & \text{with probability } p \\ b_0^{(2)} + b_1^{(2)} x_{1i} & \text{with probability } 1 - p \end{cases},$$

Where $\lambda \downarrow i$ is an event rate for student i, x_{1i} is the entry covariate for student i, the numerical value in the parentheses in the superscript is an indicator of a latent class.

Intercept for $b \downarrow 0 \uparrow (1)$ was fixed at -15 to represent an extremely low log-rate such that the probablility of a count > 0 was essentially zero

with probability $p_2^{(1)}$

Step-2

• The models for J latent classes can be written as $\ln(\lambda_{ii}) = \begin{cases} \Lambda^{(2)} \eta_{Si}^{(2)} & \text{with probability } p_2^{(2)} \\ M & M \\ \Lambda^{(J)} \eta_{Si}^{(J)} & \text{with probability } p_2^{(J)} \end{cases}$,

Zero Only class GMM

 Included observations with zero scores in the initial occasion (assumed observations with non-zero initial scores had zero likelihood of being in this class).

$$\eta_{Si}^{(j)} \sim N(\beta_1^{(j)}, \phi_{11}^{(j)}), \text{ and } \Lambda^{(j)} = \begin{bmatrix} 0 \\ 1 \\ \lambda^{(j)} \end{bmatrix}$$

Here, $\beta \downarrow 1 \uparrow (j)$ is the mean change, $\phi \downarrow 11 \uparrow (1)$ is the variance of the change, and $\lambda \uparrow (j)$ is the estimated time score for the jth class

Zero & Above Class GMM

 Included all observations (assumed all observations had some likelihood of being in this class).

$$\mathbf{\eta}_{i}^{(j)} = \begin{bmatrix} \boldsymbol{\eta}_{li}^{(j)} \\ \boldsymbol{\eta}_{Si}^{(j)} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \boldsymbol{\beta}_{0}^{(j)} \\ \boldsymbol{\beta}_{1}^{(j)} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\phi}_{00}^{(j)} \\ \boldsymbol{\phi}_{01}^{(j)} & \boldsymbol{\phi}_{11}^{(j)} \end{bmatrix} \end{pmatrix}, \text{ and } \mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & \boldsymbol{\lambda}^{(j)} \end{bmatrix}, \text{ where } j = (1, \dots, J).$$

Here, $\beta \downarrow 0 \uparrow (j)$ is the mean of intercept, $\beta \downarrow 1 \uparrow (j)$ is the mean of slope, $\phi \downarrow 00 \uparrow (1)$ is the variance of the intercept, $\phi \downarrow 11 \uparrow (1)$ is the variance of the slope, and $\lambda \uparrow (j)$ is the estimated time score for the jth class

Applied Example

- Sample
 - 1,911 kindergarten students in 2009-2010
- Measures
 - Entry covariate:
 - Letter Names Fluency (LNF)
 - Scale: names correct per minute (ncpm)
 - Repeated outcome:
 - Letter Sound Fluency (LSF)
 - Scale: sounds correct per minute (scpm)

Applied Results: Step 1

- Zero Class
 - 645.34 students (sum of the estimated class probabilities)
 - vs. 687 students (classify-analyze approach)
 - Intercept $\cong 0$ scpm ($e^{-15} \cong 0$)
- Zero & Above Class
 - 1265.66 students (sum of the estimated class probabilities)
 - vs. 1224 students (classify-analyze approach)
 - Intercept = 2.36 scpm $(e^{0.875})$

Applied Results: Step 2

Latent Classes								Latent Class n (%) [posterior probability]			
						VLMR	BLR	, ,		•	
Step-1	Step-2	AIC	BIC	ABIC	Entropy	p-value	p-value	1	2	3	4
Zero Class	1	11441.60	11455.24	11455.71	-	-	-	645.22			
	2	10247.60	10279.42	10257.19	.820	0.0000	0.0000	386.17	259.06		
								(59.9)	(40.2)		
								[.97]	[.91]		
	3	10072.76	10122.76	10087.84	.875	0.0000	0.0000	369.33	259.95	15.94	
								(57.2)	(40.3)	(2.5)	
								[.97]	[.91]	[.89]	
	4	9935.99	10004.17	9956.54	.800	0.0001	0.0000 [†]	118.94	305.05	15.38	205.85
								(18.4)	(47.3)	(2.4)	(31.9)
								[.78]	[.90]	[.90]	[.93]
Zero & Above Class	1	40958.26	40991.59	40972.53	-	-	-	1265.68			
	2	40079.89	40152.11	40110.81	.490	0.0000	0.0000^{\dagger}	726.28	539.37		
								(57)	(43)		
								[.87]	[.79]		
	3	39838.48	39949.58	39886.05	.623	0.0000	0.0000 [†]	300.93	492.47	472.26	
								(24)	(39)	(37)	
								[.86]	[.81]	[.84]	
	4	39768.07	39918.07	39832.29	.658	0.0035	0.0000^{\dagger}	542.29	251.20	440.05	32.11
								(42)	(23)	(34)	(2)
								[.81]	[.86]	[.79]	[.63]

Note. VLMR = Vuong-Lo-Mendell-Rubin likelihood ratio test. BLRT = parametric bootstrapped likelihood ratio test.

Results

Results

Discussion

- ZI initial data and distributional changes over time is not interesting or novel in itself.
- Great potential lies in the method of distinguishing between students whom begin at zero and make meaningful gains and students whom begin at zero and do not.
- The value lies in demarcating these groups before the skill disparity between them becomes readily evident.

Questions

- 1) Do you have longitudinal data with similar distributional properties?
- 2) What are your reactions to the theoretical implications of the reading findings we presented?
- 3) Is there an approach to simplify our two-step approach into a single model?