Modeling Growth for NCLB Subgroups: Effects of Time-Varying Disability Classification

Joseph F. T. Nese¹
Gerald Tindal¹
Joseph J. Stevens¹
Ann C. Schulte²
Stephen N. Elliott²
Jessica L. Saven¹
Dan Farley¹

¹University of Oregon
²Arizona State University

Special thanks to Patrick Curran for personal communications.
Introduction

- Many students move within and out of disability classification over time.
- These changes in student classification lead to modeling choices for the representation of SWD status as time-invariant covariates (TICs) or time-variant covariates (TVC).
- **Purpose:** examine different approaches to modeling the time-varying nature of disability classification and describe how different models can lead to different substantive findings and interpretations.
Research Questions

1) For students across Grades 3 through 8, what is the reclassification rate between disability and without disability, and between disability categories?

2) How do different specifications of disability classification as time-invariant and time-varying covariates affect the estimated growth trajectories for students with disabilities?

3) Which of the four proposed models best fits the data?
Method

- Repeated Outcome Measures: Standardized state mathematics test scores
- Sample
  - 28,967 students in Grades 3-8 from 20008 to 2013
- SWD classifications as categorical indicators
  1) SLD: Specific Learning Disability
  2) CD: Communication Disorder
  3) ED: Emotional Disturbance
  4) OHI: Other Health Impairments
  5) ASD: Autism Spectrum Disorder
  6) All Other disabilities
Analyses

- **Comparison Models**
  - **Time-variant covariates (TVC)**
    1. Model 1: each repeated measure regressed on the corresponding grade level SWD covariates
    2. Model 2: TVC coefficients vary randomly between students such that a random effect for each SWD category is estimated for each student.
  - **Time-invariant covariates (TIC)**
    3. Model 3: growth trajectory factors (intercept, linear and quadratic slopes) regressed only on the initial Grade 3 SWD covariates
    4. Model 4: growth trajectory factors regressed on the SWD covariates for all grades
TVC

*For simplicity, not all SWD categories are represented, nor are all repeated outcome measures.

Model 1

Model 2
Analyses

- **Comparison Models**
  - **Time-variant covariates (TVC)**
    1) Model 1: each repeated measure regressed on the corresponding grade level SWD covariates
    2) Model 2: TVC coefficients vary randomly between students such that a random effect for each SWD category is estimated for each student.
  - **Time-invariant covariates (TIC)**
    3) Model 3: growth trajectory factors (intercept, linear and quadratic slopes) regressed only on the initial Grade 3 SWD covariates
    4) Model 4: growth trajectory factors regressed on the SWD covariates for all grades
*For simplicity, not all SWD categories are represented, nor are all repeated outcome measures.

**Model 3**

**Model 4**
Results

RQ1: What is the reclassification rate between disability and without disability?

<table>
<thead>
<tr>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5</th>
<th>Grade 6</th>
<th>Grade 7</th>
<th>Grade 8</th>
<th>Ever SWD</th>
<th>Always SWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>11.9</td>
<td>11.8</td>
<td>10.9</td>
<td>10.4</td>
<td>9.9</td>
<td>17.3</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Percentage
Results

RQ1: What is the reclassification rate between disability and without disability, and between disability categories?
Results

RQ2: How do different specifications of SWD classification as TVC and TIC affect the estimated growth trajectories?
## Results

**RQ3:** Which of the four proposed models best fits the data?

<table>
<thead>
<tr>
<th>Fit Indices</th>
<th>Unconditional Model</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>1127153.50</td>
<td>1125752.16</td>
<td>1126468.28</td>
<td>1125825.13</td>
<td>1123031.72</td>
</tr>
<tr>
<td>BIC</td>
<td>1127277.61</td>
<td>1126174.13</td>
<td>1126691.68</td>
<td>1126098.17</td>
<td>1124049.41</td>
</tr>
<tr>
<td>ABIC</td>
<td>1127229.94</td>
<td>1126012.05</td>
<td>1126605.87</td>
<td>1125993.30</td>
<td>1123658.51</td>
</tr>
<tr>
<td>CFI</td>
<td>.97</td>
<td>.95</td>
<td>--</td>
<td>.97</td>
<td>.97</td>
</tr>
<tr>
<td>TLI</td>
<td>.96</td>
<td>.94</td>
<td>--</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>SRMR</td>
<td>.33</td>
<td>.07</td>
<td>--</td>
<td>.18</td>
<td>.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endogenous variables</th>
<th>Unconditional Model</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.044</td>
<td>0.132</td>
</tr>
<tr>
<td>Linear slope</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.002</td>
<td>0.014</td>
</tr>
<tr>
<td>Quadratic slope</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.001</td>
<td>0.010</td>
</tr>
<tr>
<td>Math Grade 3</td>
<td>.76</td>
<td>.76</td>
<td>--</td>
<td>.76</td>
<td>.76</td>
</tr>
<tr>
<td>Math Grade 4</td>
<td>.76</td>
<td>.75</td>
<td>--</td>
<td>.76</td>
<td>.76</td>
</tr>
<tr>
<td>Math Grade 5</td>
<td>.80</td>
<td>.80</td>
<td>--</td>
<td>.80</td>
<td>.80</td>
</tr>
<tr>
<td>Math Grade 6</td>
<td>.79</td>
<td>.79</td>
<td>--</td>
<td>.79</td>
<td>.79</td>
</tr>
<tr>
<td>Math Grade 7</td>
<td>.83</td>
<td>.83</td>
<td>--</td>
<td>.83</td>
<td>.83</td>
</tr>
<tr>
<td>Math Grade 8</td>
<td>.85</td>
<td>.84</td>
<td>--</td>
<td>.85</td>
<td>.85</td>
</tr>
</tbody>
</table>

*Note: For Model 2, the variance of the repeated measures varied with disability classification which precludes the calculation of standardized coefficients and chi-square and related fit statistics.*
Discussion

- Movement of students within and out of disability classification over time.
- TIC preferred over TVC models due to small proportion of reclassified students.
- Limited generalizability.
- TVC models for different populations or TVC.
- Different approaches to analyzing differences between groups; e.g., effect sizes.