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Abstract 

We descriptively examine teachers’ decisions to progress monitor students in math based on fall 

easyCBM
®
 benchmark quintiles.  Hierarchical linear modeling (HLM) is also used to investigate 

the growth of students during the school year in three mathematical domains using progress 

monitoring measures.  We model the growth of students in three mathematical domains 

simultaneously, allowing for a nuanced evaluation of student growth, including the examination 

of the correlations among growth for the three mathematical domains.  Participants included 

26,537 sixth grade students from 24 states.  Descriptive findings illustrate that students were 

progress monitored with little score-based regularity. Implications for teacher decision-making 

and progress monitoring students in mathematics are discussed.  
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Teacher Decision-Making and Within-Year Growth in Math 

Response to intervention (RTI) is an instructional framework aimed at systematically 

identifying and monitoring the progress of students performing below expectations.  The RTI 

model has gained traction in recent years as a school-wide improvement effort (Deno et al., 

2009), and was endorsed in the most recent revision of the Individuals with Disabilities 

Education Act (IDEA, 2004).  Previous research has demonstrated that the positive effect of RTI 

on individual student achievement may be quite large (Burns, Appleton, & Stehouwer, 2005). 

Under the basic RTI model, all students are administered benchmark screening assessments, 

typically seasonally (i.e., fall, winter, spring; Christ, Silberglitt, Yeo, & Cormier, 2010).  

Students performing below some educator-defined normative cut-point are then provided an 

academic intervention and their progress is monitored with regular administration of curriculum-

based measurement (CBM) probes.  Teacher’s instructional decisions can then potentially be 

based on a set of data that inform both (a) students’ relative standing at any single point in time 

[benchmark screenings] and, (b) the effect of intervention practices on the growth of students 

performing below expectations [progress monitoring probes].  

The purpose of this study is twofold.  First, we use a large extant dataset from a formative 

assessment system designed for use within RTI to descriptively examine teachers’ decisions to 

progress monitor students.  The extant database is useful because it helps us better understand 

how decisions are being made in the field, rather than how they theoretically should be made.  

Despite the abundance of research surrounding RTI (see Burns et al., 2005; Deno et al., 2009; 

Gersten & Dimino, 2006; Johnson, Mellard, Fuchs, & McKnight, 2006), surprisingly little has 

focused on how these decisions are actually made in the field by teachers.  The validity of RTI 

rests upon these decisions, and research by Tindal and colleagues suggested they may not always 



TEACHER DECISION-MAKING 4 

function as might be expected (Tindal, Alonzo, Nese, & Saez, 2012).  Our descriptive analyses 

are intended to add to the emerging literature.  

The second purpose of the study is to investigate the growth of sixth grade students who 

were assigned progress-monitoring probes in math.  In an extensive review of the literature on 

progress monitoring in math, Foegen, Jiban, and Deno (2007) concluded that “considerable 

research is needed to further establish these [progress monitoring math] measures” (p. 132).  

Thus, a secondary purpose of this paper is to evaluate the growth of students observed through 

short (16 item) progress monitoring mathematics measures.  We model the growth of students in 

three mathematical domains simultaneously, allowing for a nuanced evaluation of student 

growth.  Modeling the growth of students across domains also allows us to examine the degree to 

which growth in one mathematical domain correlates with growth in another mathematical 

domain.  Because all analyses were conducted with an extant dataset, however, the measures that 

students were administered were contingent upon teachers’ decisions.  

Decision Making within RTI 

The majority of research on decisions made within RTI to date has focused on the utility 

of the measures used, rather than the actual decisions being made.  For example, VanDerHeyden 

(2011) discusses the importance of classification accuracy analyses to determine the adequacy of 

potential decisions made.  Using letter sounds and oral reading fluency measures, she found that 

many measures often did not classify students at a higher than chance rate using four separate 

criteria.  In an earlier study VanDerHeyden and Burns (2008) investigated the technical 

adequacy of mathematics CBMs, concluding that “the degree to which accurate decision making 

can be based on various scores in mathematics assessment will depend on the evolution of a 

model for knowing what to measure, on what occasions or at what intervals, to accurately reflect 
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particular goals” (p. 222).  In other words, if the measurement process does not result in a set of 

data that accurately and reliably indicate the underlying construct, then the validity of any 

potential decision could be called into question. 

While the validity of decisions depends, in part, upon the accuracy of the measures used, 

it also depends upon the decision-making framework applied.  As Burns, Scholin, Kosciolek, and 

Livingston (2010) noted, “Evaluating the psychometric properties of assessment data has to 

occur within the context of the decisions being made” (p. 104).  Using a single subject design, 

the authors empirically investigated the validity of two commonly applied decision making 

frameworks within RTI– dual discrepancy (D. Fuchs, Fuchs, McMaster, & Al Otaiba, 2003) and 

aim or goal lines (Deno, 1986).  The authors used data from 30 second grade students and found 

that 40% of classification decisions changed based on the model applied.  The validity of 

decisions within RTI thus depends highly on both the technical characteristics of the measures 

used and the decision-making framework applied.  

Another potential source of variability in the types of decisions made, but less discussed 

in the literature, is the amount of training educators (teachers, principals, and district-wide RTI 

adoption leaders) have on the systems being implemented.  Such training includes, but is not 

limited to; the measurement system implemented, the adopted decision-making framework, the 

reporting scale, school- or district-wide policies, and the resources available to provide students 

with interventions.  In a series of papers from a conference symposium, Tindal et al. (2012) used 

extant data to show a surprising array of decisions being made, including students being 

progress-monitored on a regular basis despite performing well above the 50
th

 percentile of 

normative performance.   
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Mathematics Progress Monitoring 

Relative to reading, math progress-monitoring and RTI in general is in its infancy 

(Gersten et al., 2012). Further, the majority of research that has been conducted in the area of 

math has been aimed at the primary grade levels (e.g. L. Fuchs & Fuchs, 2001; L. Fuchs, Fuchs, 

& Compton, 2012; Gersten et al., 2012).  The focus of research on the primary grades has been 

largely due to the need for early intervention.  However, more research is needed in the middle 

school grades to explore what represents typical levels of achievement, how students are 

progress-monitored progress over time, and how growth varies by mathematical domain – all of 

which are contingent upon the instruction provided to the student, which is dependent upon 

teacher decision-making within RTI. 

In a literature review, Foegen et al. (2007) identified 32 studies related to CBM math 

progress monitoring, of which 6 were related to middle school mathematics, and only 1 explored 

student growth.  More recent review by Lembke, Hampton, and Beyers (2012) suggests the 

situation has not greatly changed, finding only three studies reporting mathematics growth for 

students in grades 6, and no studies in grades 7 or above.   

It seems clear that more research is needed in mathematics progress monitoring – 

particularly related to the growth that students make.  In what follows, we present our methods 

for descriptively examining an extant dataset relative to teachers’ decision to progress-monitor 

students.  Given the work of Tindal et al. (2012), who also used extant data, we expect to find 

patterns that do not necessarily coincide with theoretical models for RTI (e.g. Deno et al., 2009).  

We then explore the growth of students who were progress-monitored during the school year by 

mathematical domain.  The breakdown of growth by mathematical domain may lead to new 

insights into how middle school students progress over the course of a school year.  
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Methods 

easyCBM® Assessment System 

 An extant sixth grade dataset from the 2011-2012 easyCBM® mathematics tests was 

used in this study.  Data included scores on the fall benchmark assessment and 30 possible 

progress monitoring assessments.  The progress monitoring measures consisted of 10 test forms 

in each of the three National Council of Teachers of Mathematics (NCTM) focal point standards: 

Number and Operations (NO), in which students develop their understanding of and fluency with 

multiplication and division of fractions and decimals; Algebra (ALG), in which students write, 

interpret, and use mathematical expressions and equations; and Number Operations and Ratios 

(NOR), in which students connect ratio and rate to multiplication and division (NCTM, 2006).  

All test forms contained 16 items, and were developed to be of equivalent difficulty using a 

Rasch model (Lai, Alonzo, & Tindal, 2009).  The fall benchmark measure consisted of one 45-

item form, with approximately one-third of all items aligned to each focal point.  In a study by 

Nese et al., (2010) benchmark internal reliability estimates ranged from .73 to .83, and split-half 

reliabilities ranged from .84 to .89. 

Participants 

Our original sample consisted of 26,537 students from 111 districts in 24 states who took 

either the fall benchmark measure or at least one sixth grade progress-monitoring measure.  

Submitting demographic information by teachers was voluntary, and was thus sparse.  Given this 

limitation, of those students with indicated demographic information: 42% were female (12% 

missing); 5% had a disability (67% missing); 4% were classified as English language learners 

(66% missing); 2% were Asian, 5% were African American, 13% were Latino, 4% were 
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American Indian or Alaska Native, 2% were Multi-ethnic, 0.3% were Native Hawaiian or Pacific 

Islander, and 33% were White (40% missing). 

The analytic sample used to explore whether students’ fall benchmark focal point 

subscores were predictors of students’ progress monitoring intercepts and slopes included only 

students who had both a valid fall benchmark score for each focal point and at least one occasion 

of progress monitoring at the sixth grade level; restricting the sample to 4,563 students.  This 

drastic drop in number of students was expected, as theoretically only students who perform 

below expectations receive progress monitoring probes.  As mentioned previously, the optional 

entry of demographics led to sparse information about these students.  A total of 61 districts from 

11 different states were represented in the analysis.  The sample was approximately 38% female 

(19.2% missing), and 7% of students had a disability (72% missing).  The ethnic breakdown of 

students was as follows: 2% Asian, 7% African American, 16% Latino, 3% American Indian or 

Alaska Native, 3% multi-ethnic, 0.2% Native Hawaiian or Pacific Islander, 25% White, and 44% 

of the sample had missing ethnicity information.  Students designated as English language 

learners made up 5% of the sample (69% missing).  

Analyses 

 Descriptive. To examine the patterns in which sixth grade students were assigned 

progress monitoring measures, descriptive tables were created summarizing student information 

by fall benchmark quintiles based on total benchmark score using the easyCBM
®
 reported norms 

(http://www.easyCBM.com).  The quintiles themselves range as follows: quintile one, twentieth 

percentile and below (score of less than 25); quintile two, 21
st
 to 38

th
 percentile (score of 26 to 

28); quintile three, 44
th

 to 60
th

 percentile (score of 29 to 32); quintile four, 61
st
 to 80

th
 percentile 

(score of 33 to 36); and quintile five, 81
st
 percentile and above (score of 37 to 45).  Quintile two 
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did not end at the 40
th

 percentile and quintile three did not begin at the 41
st
 percentile because a 

fall benchmark score of 28 was equivalent to the 38
th

 percentile, and a fall benchmark score of 

29 equivalent to the 44
th

 percentile, necessitating that quintiles two and three be broken at that 

point.  

Table 1 includes the total sample of all sixth grade students who took either the fall 

benchmark measure or at least one sixth grade progress-monitoring measure (n = 26,537), and 

displays the number of students who were progress-monitored above, below, and on grade level.  

The table is further broken down into two totals: students with a valid fall benchmark score, and 

all students who took any type of measure.  Tables 2 and 3 include only students whose scores 

were used for the HLM analysis, and were consolidated into two areas by fall benchmark 

quintile: (a) focal points in which students were progress-monitored (Table 2); and (b) total 

number of focal points in which students were progress-monitored (Table 3). 

Hierarchical linear growth model. One HLM model was used to examine student 

growth in mathematics progress monitoring in which all three focal points served as the 

univariate outcome, with time (level-1) nested within student (level-2).  This approach allowed 

us to better control for type-1 error, provided the analysis with increased power, and allowed for 

correlation among slopes for all focal points.  For modeling slope, the linear and quadratic time 

variables for each focal point were individually centered.  That is, each student’s first time point 

was coded 0 with all subsequent time points coded in the fractional months (representing the 

days occurring between assessments) elapsed from the first administration, regardless of when 

progress monitoring began.   

The overall model intercept was represented by a reference measure, NO; two dummy 

vectors representing ALG and NOR were also entered in the model to indicate when the outcome 
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measured ALG or NOR as opposed to NO.  These dummy vectors represented the difference in 

the intercept for ALG or NOR from NO.   Each measure type then had its own clock variable 

coded to represent both a linear and quadratic slope.  When the dummy vectors indicated the 

outcome was NO, the ALG and NOR time variables were coded as 0. Similarly, when the 

dummy vectors indicated the outcome was NOR, the ALG and NO time variables were coded 0, 

and when the dummy-vectors indicated the outcome was ALG, the NO and NOR time variables 

were coded 0. This coding scheme resulted in a model where all terms dropped from the model 

except those relevant to the specific domain indicated by the dummy vectors, and the growth of 

students on each measure type could be fit concurrently.  

 All HLM analyses were conducted with the HLM 7 software (Raudenbush, Bryk, 

Cheong, Congdon, & du Toit, 2011), and full information maximum likelihood was used for 

estimation, by which parameter estimates are considered to be unbiased under the MAR 

condition (Baraldi & Enders, 2010). .  

The full unconditional model (Model 1) for the analysis was defined as  

                                                          
                                                           
                                              

 

            
             

            
             

            
            
              
            
            

 

where  

          = progress monitoring score for student i at time t,  
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                     dummy variables that represent the difference between the intercept 

(NO at time zero) and these respective focal points, 

          ,            , and             = linear growth slopes for NO, ALG, and NOR 

respectively, and 

             ,               , and                = quadratic, curvilinear growth slopes 

for NO, ALG, and NOR, respectively. 

For the a priori conditional growth model, we added a series of dummy-coded vectors to 

distinguish students who started progress monitoring in any sixth grade focal point in the winter 

(WINTSTART) and spring (SPRSTART), such that students who started in the fall were the 

reference group.  These seasonal control variables allowed us to assess whether or not students’ 

growth in math progress monitoring score was influenced by the time of year the student began 

taking progress monitoring probes.  These seasonal controls were not broken down by focal 

point, as we theorized that being progress monitored in any focal point had the potential to 

influence growth in other focal points, as they are all constructs within mathematics.  

Additionally, we entered focal point subscores from the fall 2011 easyCBM math 

benchmark as predictor variables.  The addition of these variables (FallNO, FallALG, & 

FallNOR), which were all entered grand-mean centered, allowed us to assess the degree to which 

benchmark score focal point subscores predicted the intercept and growth of students on the 

same progress monitoring focal point.  

Our final a priori conditional model (Model 3) including both covariates is shown below: 
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The     term represented the between-student variability in the intercept, which in this case was 

our reference measure, fall NO.  The     and     terms represented the between-student 

variability in the ALG and NOR intercepts, respectively.  The     through     terms represented 

the between-student variability in linear growth rate for each focal point, while the     through 

    terms the between-student variability in the quadratic growth rate for each focal point.   

Results 

 Descriptive Analysis. Descriptive information illustrated trends that were divergent from 

theory about how teachers select students for progress monitoring in some cases.  The most 

straightforward results came from the 21,402 students who had a valid benchmark score.  Of 

these students, 5,041 were assigned to progress monitoring.  Among these 5,041 students, 92% 

of students were progress-monitored at least once on grade level.  Less than 1% of the students 

were assessed at least once above grade level, and 20% were assessed below grade level at least 

once.  About 41% of the students from benchmark quintile one (low performing students; score 

of less than 25) were assigned to progress monitoring at any grade level.  More specifically, 31% 

of students from quintile one received at least one measure on grade level, less than 1% above 

grade level, and 13% below grade level (see Table 1).  In contrast, 18% of students from quintile 
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three (average performing students; score between 29 and 32) received progress monitoring; 

18% of the quintile was progress-monitored on grade, less than 1% of the quintile above grade, 

and 2% of the quintile below grade.  Finally, 14% of students from quintile five (high performing 

students, score above 36) were assigned to progress monitoring; 13% of that quintile was 

progress-monitored on grade level, and less than 1% of the quintile both above and below grade 

level.  By and large, students with lower fall benchmark scores received progress-monitoring 

probes at a higher frequency than their higher-scoring peers.   

Table 2 illustrates that 70% of students who had both a valid benchmark score and were 

progress-monitored received at least one measure in NO, 87% in ALG, and 49% in NOR.  While 

the percentages vary within approximately 11 percentage points across fall benchmark quintiles 

for NO (66% to 77%) and ALG, (81% to 89%), the focal points show opposite trends: students 

in lower quintiles were progress-monitored less often in NO than those in higher quintiles, with 

the reverse being the true for ALG.  Additionally, only 65% of students in the first quintile were 

progress-monitored in NOR, whereas 81% of students in quintile five were progress-monitored 

at least once in this area.   

The students assigned progress monitoring on grade level with a valid benchmark score 

were also broken down by quantity of focal points they were administered (Table 3).  Overall, 29% 

of students received progress monitoring in one focal point, 14% in two focal points 14%, and 57% 

in all three focal points.  Students in benchmark quintile one were more often progress-

monitored in all three focal points (52%) than their higher-achieving peers, and received progress 

monitoring in one focal point more often than in two (31% and 17%, respectively).  Students in 

the higher quintiles showed similar trends, with quintile three progress-monitored in three focal 

points 57% of the time, and quintile five progress-monitored in three focal points 67% of the 
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time.  Moving upward through the quintiles, the amount of progress monitoring in one or two 

focal points decreases, and progress monitoring in three focal points increases.   

Unconditional HLM model results. For the full unconditional model (Model 1), the 

fixed effects were all significant, but the random effects for the NOR intercept and NO linear and 

quadratic slopes were not (p > .50).  Fixing the random effects for the NO linear and quadratic 

slopes led to a model in which the random effect for the NOR intercept was significant (p < .05).  

Hypothesis testing showed that this revised model fit the data significantly better than the full 

unconditional model,  2
(17) = 114.68, p < .001.  However, the NO quadratic fixed effect was no 

longer significant (p > .50), and was thus removed to form the final unconditional model (see 

Model 2, Appendix 1).   

The winter and spring start dummy vectors were then added to the model at the student 

level to control for the season in which students began progress monitoring.  The seasonal 

control variables were only significant in a limited number of instances, although the overall 

model including these covariates explained significantly more variance than the final 

unconditional model,  2
(16) = 146.22, p < .001.  The winter start variable was a non-significant 

predictor of the ALG intercept, the NO and ALG linear slopes, and both quadratic slopes.  The 

spring start variable was a non-significant predictor of the NO intercept, the NO and NOR linear 

slopes, and the NOR quadratic slope.  These variables were thus removed from the model for the 

sake of parsimony. 

Students’ focal point subscores from the fall benchmark test were then added to the 

model as student-level predictors to explore the magnitude of the relation between the screening 

instrument and students’ intercept/growth in progress monitoring.  The model including these 

subscores fit the data significantly better than the final seasonal control model,  2
(8) = 2031.25, 
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p < .001.  The subscores were universally significant predictors of the intercepts, but were not 

significant predictors of the ALG linear or quadratic slopes or the NOR quadratic slope (p > .05).   

Both variables were thus removed from the model, yielding the final conditional model (see 

Model 4, Appendix 1).   

Final model results. Results of our full model testing are presented in tables 4 (fixed 

effects) and 5 (random effects).  Our final model indicated that the average beginning 

achievement (i.e., intercept) for students in fall for NO was 11.08, with a standard deviation for 

the variance component of 2.00.  In fall, students scored, on average, 1.97 points lower in ALG, 

and 0.77 points lower in NOR, with standard deviations for the variance components of 1.48 and 

1.25, respectively.  In fall, students gained, on average, 0.19 points per month in NO, with no 

significant between-student variance.  On average, students gained 0.09 points per month in 

ALG in the fall, with a standard deviation for the variance component of 0.67; and 0.41 points 

per month in NOR, with a standard deviation for the variance component of 0.44.  Additionally, 

students progress-monitored in ALG and NOR had a curvilinear aspect to their growth rates.  

Students progress-monitored in fall in ALG showed a very slight acceleration in growth (0.02 

problems per month squared, SD for the variance component of 0.09), whereas students 

progress-monitored in NOR showed a very slight deceleration in growth rate (-0.03 problems per 

month squared, SD for the variance component of 0.05).  Figure 1 displays the math progress 

monitoring growth in NO, ALG, and NOR as it varied when monitoring began in fall (F), winter 

(W), and spring (S). 

Overall, the relations among the variables varied by the time the student entered progress 

monitoring. Students who began progress monitoring in the winter had a slightly lower NO 

intercept (-0.35) and a slightly higher NOR intercept (0.56) than students who began progress 
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monitoring in the fall, but fall and winter ALG intercepts were not significantly different and 

were thus constrained (Figure 1).  These students did not differ in their NO growth, but 

exhibited, on average, roughly half the linear NOR growth (-0.20 points per month) of students 

who began in the fall.  Students who began progress monitoring in the spring had a slightly 

higher ALG intercept (0.56) and NOR intercept (0.91) than students who began in the fall 

(Figure 1).  These students had a substantially lower rate of linear growth (-0.77 points per 

month) for ALG, but had a higher rate of acceleration in growth (0.36 points per month).  

Students who began progress monitoring in the spring did not differ significantly from students 

who began in the fall for NO or NOR. 

Students’ fall NO benchmark subscore was a significant predictor of their NO progress 

monitoring intercept.  For every 1-point increase in the subscore for NO on the fall benchmark, 

students’ initial score in NO progress monitoring increased by 0.46 points (Figure 2a).  The fall 

benchmark subscore for NO had a significant negative association with the linear growth rate for 

NO in progress monitoring, with every 1-point increase in fall benchmark subscore 

corresponding with 0.01 fewer points gained per month.  The fall benchmark subscore for ALG 

was also a significant predictor of the ALG progress monitoring intercept (Figure 2d).  For every 

1-point increase on the fall benchmark in ALG, students scored, on average, 0.19 points higher 

initially on the ALG progress monitoring probes.  There were no significant differences in the 

linear or curvilinear slopes for ALG based on fall benchmark subscores.  NOR fall benchmark 

subscores were also a significant predictor of the NOR progress monitoring intercept.  For every 

1-point increase in fall benchmark score for NOR, students scored, on average, 0.25 points 

higher on their initial NOR progress monitoring measure (Figure 2g).  The NOR linear growth 

rate decreased slightly for every one point increase in fall benchmark subscore (0.02 problems 
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per month).  Overall, students who scored higher in each focal point for the fall benchmark 

scored higher initially on the respective progress monitoring measures in a given focal point, but 

exhibited slightly less growth per month than students with lower benchmark scores in those 

areas.   

Correlations. The full unconditional model, discussed previously, was used to evaluate 

the degree of relation among growth slopes in three mathematical domains.  The model 

suggested that the strongest correlation between linear growth rates was for NO and ALG (.57).  

The measures that students performed highest on initially (NO & NOR) also had the least 

correlated linear growth slopes (.33).  The correlation between the curvilinear growth rates of 

NO and ALG was moderate (.68), while the correlations between the quadratic slopes of NO and 

NOR and ALG and NOR were weak (.07 and .23, respectively).  Although the curvilinear 

growth rates of NO and ALG were most highly correlated, the quadratic for NO was later 

removed from the model due to nonsignificance.     

Discussion 

This study descriptively examined an extant dataset relative to teachers’ decision to 

progress-monitor students, and explored the growth of students who were progress-monitored 

within the school year by three mathematical domains.  The goals were (a) to illustrate trends in 

teachers’ decisions to assign students to progress monitoring in ways that either aligned with or 

diverged from theoretical RTI models (e.g., Deno et al., 2009), and (b)  to gain new insights into 

how middle school students progress in mathematics during the course of a school year. 

At first glance, teacher decision-making relative to progress monitoring appears 

reasonable: overall, 24% of students who took the fall benchmark test were progress-monitored 

at least once. This percentage aligns well with recommendations from Fuchs and Fuchs (2006), 
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who suggest that all students performing below the normative 25
th

 percentile be progress 

monitored. However, of the students scoring in quintile one on the fall benchmark, only 41% of 

students received progress monitoring probes at any grade level, and only 31% received progress 

monitoring probes at a sixth grade level.  This would seem to imply that many students whose 

performance suggested were most in need of mathematics interventions did not receive them.  At 

the same time, nearly 14% of students performing in quintile five received progress monitoring 

probes, nearly all of which were administered on grade-level.  Because we were limited to extant 

data, we can only speculate as to why these patterns emerged, but they do appear to diverge from 

theoretical models of RTI implementation, suggesting more research is needed.   

It is possible that many students who performed in quintile one and did not receive 

progress monitoring did, in fact, receive an intervention.  The effect of the intervention may 

simply have not been documented with easyCBM math probes.  Teachers may have used other 

sources of information, including professional judgment and/or other measurement systems to 

gauge the effectiveness of the intervention and monitor these students’ progress over time.  Yet, 

even if we accept that not all students in our sample who received an intervention also received 

easyCBM progress monitoring, the overall percentages still appear low for quintile one.  Ideally, 

the vast majority of students whose fall benchmark performance placed them in the quintile one 

of normative performance would receive an intervention followed by progress monitoring.  It 

thus remains concerning that nearly two-thirds (59%) of students scoring in quintile one did not 

receive progress monitoring measures.   

Our findings also echo those of Tindal et al. (2012), in that a surprising number of 

students received progress monitoring measures despite initially scoring above the 50
th

 percentile 

on the fall mathematics benchmark assessment.  However, we do not know whether these and 
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other observed decisions to progress monitor students were made by teachers operating within 

any form of RTI framework, or by those using progress monitoring measures for other purposes. 

This limitation impacts the validity of generalizations made from such extant data.  Future 

investigation of mathematics progress monitoring practices, and subsequent student growth, 

within schools and districts may illuminate many differences in patterns of how students are 

assigned to progress monitoring.  Descriptive statistics illustrated that while teachers generally 

used progress monitoring as it was theoretically intended for quintiles two through four, teachers 

in some cases misused the system when assigning students from quintiles one and five to 

progress monitoring.  Whether this is intentional or accidental is unknown.   

Table 3 illustrates that the percentage of students assigned to progress monitoring in all 

three focal points increased as fall benchmark quintile increased. This finding was unexpected, 

as we assumed that students who performed lower on the fall benchmark would have more need 

of intervention and subsequent progress monitoring in multiple domains of math, relative to 

students who performed higher on the fall benchmark.  While we can only speculate on why we 

observed this relation, it is likely that teachers were assigning students to progress monitoring for 

reasons other than to monitor their response to a specific intervention.  The finding also perhaps 

points to a need for studies of RTI in which teachers are observed and/or provided incentives to 

document their specific decision-making practices, so we can begin to understand why these 

patterns occur.  

A concern for the limited amount of research regarding progress monitoring of middle 

school students in mathematics (Foegen et al., 2007; Gersten et al., 2012; Lembke et al., 2012) 

reinvigorated by the observed patterns of progress monitoring practices in our data led us to 

examine student progress monitoring growth in three mathematical domains using HLM.  The 
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goal of this portion of the study was to explore what “typical” achievement was for a sixth grade 

student who received progress monitoring probes.  This analysis was limited: theoretically, 

students assigned to progress monitoring should also receive some form of mathematics 

intervention.  We have no way of knowing which students did, in fact, receive such 

interventions, which may reduce the generalizability of our findings  

Low performing students were most often progress-monitored in ALG, whereas higher 

performing students were more often progress-monitored in NO and NOR. We are unsure of 

why these patterns exist; however, it merits further investigation as it is possible that students 

with varying mathematical skills may have significantly different needs and growth patterns.  

Future research should model student growth and the effects of progress monitoring based on 

their achievement level using methods such as dividing the sample into groups based on 

normative achievement (e.g., perhaps quintiles) before exploring student growth.  These efforts 

would help to describe the patterns of growth for students receiving progress monitoring in 

mathematics. 

As schools can vary greatly in how they implement RTI, future research should explore 

the growth of students by school and perhaps district, perhaps by including one or both of these 

additional levels to our HLM model.  If information on the school or district RTI practices or 

policies was also obtained then difference between schools in overall student growth could be 

evaluated relative to these implementation efforts.  Such insight would help inform RTI 

implementation for mathematics, as well as more accurately represent the growth of students. 

Our study represents an initial step in this direction.   

The findings from this study were congruent with those of Tindal et al. (2012), 

suggesting that progress monitoring patterns in extant data diverge from theoretical models for 
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RTI (e.g. Deno et al., 2009).  Information regarding how middle school students who are 

progress monitored grow during the course of a school year can enhance teacher decision-

making up to a point: when differences in growth are described in terms of fractions of a point 

increase per month, as our model illustrated, it may not necessarily translate to information 

educators can use to better serve the needs of their students.  While this study addressed some of 

the gaps in extant literature regarding sixth grade mathematics progress monitoring and 

subsequent student growth, additional research is necessary to better understand student progress 

monitoring growth in a way that is more useful for teachers.   

Examining actual progress monitoring practices of educators in which specific decisions 

are documented and tracked over the course of a school year is necessary in order to later map 

them with student growth.  The individuals in this extant data were assumed to be progress 

monitored according to RTI conventions for the growth model, but descriptive statistics clearly 

indicate that was not the case for all students.  A system of refinement is called for in order to 

classify which students actually meet criteria for being progress-monitored, including 

documented interventions delivered to such students, and measures of student progress taken at 

accepted intervals.   

Investigating how RTI is implemented in classrooms and schools can be very costly 

work.  However, as evident in this study, there is great variety in teacher decision-making when 

it comes to assigning students to progress monitoring, as well as what mathematical domains 

students are progress monitored in.  We need to better understand teacher decision-making in 

order to assist teachers in making more appropriate decisions about progress-monitoring 

practices and to make progress monitoring within an RTI system more effective.  Without this 



TEACHER DECISION-MAKING 22 

information, modeling the growth of progress-monitored students precisely cannot be 

guaranteed.  
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Table 1  

Grade Level Progress Monitored at by Fall Benchmark Quintile 

Fall benchmark 

quintile 

Total 

Students 

Students 

progress 

monitored 

(#) 

Students 

progress 

monitored 

(%) 

Progress 

monitored 

on grade 

(%) 

Progress 

monitored 

above 

grade  

(%) 

Progress 

monitored 

below  

grade  

(%) 

* 5135 1347 26.23 20.18 < 1% 8.22 

1 5375 2006 41.04 31.33 < 1% 12.97 

2 4162 1122 26.96 25.49 < 1% 4.81 

3 4492 813 18.10 17.48 < 1% 1.85 

4 3580 584 16.31 16.15 < 1% 0.81 

5 3793 516 13.60 13.29 < 1% 0.29 

Total with valid 

benchmark 
21402 5041 23.55 21.55 < 1% 4.73 

All students 26537 6378 24.00 21.28 < 1% 7.69 

*These students did not take the fall benchmark 
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Table 2 

 Focal Point Progress Monitored (PM) at by Fall Benchmark Quintile  

Fall benchmark 

quintile 

Total 

Students 

% 

Students 

PM in NO 

(%) 

PM in ALG 

(%) 

PM in NOR 

(%) 

1 1636 35.85 66.26 89.85 65.10 

2 1060 23.23 67.74 88.58 69.81 

3 785 17.20 72.48 83.44 72.99 

4 578 12.67 77.16 81.31 78.37 

5 504 11.05 77.38 83.93 81.35 

Total 4563 100 70.28 86.72 71.03 
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Table 3  

Number of Focal Points (FP) Progress Monitored (PM) in by Fall Benchmark Quintile 

Fall benchmark 

quintile 

Total 

Students 

% 

Students 

PM in 1FP 

(%) 

PM in 2FP 

(%) 

PM in 3FP 

(%) 

1 1636 35.85 30.75 17.30 51.96 

2 1060 23.23 30.28 13.30 56.42 

3 785 17.20 28.28 14.52 57.20 

4 578 12.67 27.16 8.82 64.01 

5 504 11.05 24.80 7.74 67.46 

Total 4563 100 29.10 13.76 57.13 
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Table 4 

Fixed Effects Estimates for all HLM Analyses 

 Models 

Full 

Unconditional 

Final Unconditional Seasonal Control Final Model 

Intercept (     10.99*** 11.02*** 11.16*** 11.08*** 

Level 1 (time)     

  Int diff for ALG (     -1.88*** -1.92*** -1.96*** -1.97*** 

  Int diff for NOR (     -0.49*** -0.51*** -0.72*** -0.77*** 

  Linear NO (     0.25*** 0.19*** 0.18*** 0.19*** 

  Linear ALG (     0.08** 0.09** 0.08** 0.09** 

  Linear NOR (     0.33*** 0.32*** 0.39*** 0.41*** 

  Quadratic NO  (     -0.01*    

  Quadratic ALG (     0.02*** 0.02*** 0.02** 0.02*** 

  Quadratic NOR (     -0.02*** -0.02** -0.02*** -0.03*** 

Level 2 (student)     

  NO Wint start (               -0.75*** -0.35*** 

  ALG Spr start (                0.48*** 0.56*** 

  ALG Spr start (                   -0.73* -0.77* 

  ALG Spr start (                      0.33* 0.36* 

  NOR Wint start (                0.50*** 0.66*** 

  NOR Wint Start (                   -0.18*** -0.20*** 

  NOR Spr Start (                0.78*** 0.91*** 

  Fall NO score (int NO;         0.46*** 

  Fall NO score (                   -0.01** 

  Fall ALG score (                 0.19*** 

  Fall NOR score (                 0.25*** 

  Fall NOR score (                    -0.02*** 

Note. Reference group for Wint start and Spr start is students who started progress monitoring in the Fall.  

*p < .05, **p < .01, ***p < .001. 
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Table 5 

Random Effects Estimates for all HLM Analyses 

 Models 

Full 

Unconditional 

Final Unconditional Seasonal Control Final Model 

    Between-student NO (    6.07*** 5.63*** 5.49*** 4.02*** 

    Between-student ALG (    1.39** 1.58*** 1.56*** 2.20*** 

    Between-student NOR (    1.65 1.42** 1.31** 1.56** 

    Between-student linear NO (    0.14    

    Between-student linear ALG (    0.43*** 0.40*** 0.40*** 0.44*** 

    Between-student linear NOR (    0.19* 0.20** 0.19*** 0.19* 

    Between-student quadratic NO (    0.00****    

    Between-student quadratic ALG (    0.01*** 0.01*** 0.01*** 0.01*** 

    Between-student quadratic NOR (    0.00**** 0.00**** 0.00**** 0.00**** 

    Within student (     3.60 3.67 3.67 3.67 

*p < .05, **p < .01, ***p < .001 ****value is less than .01 and p < .01. 
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Figure 1. Grade 6 math progress monitoring growth in Numbers & Operations, Algebra, and Numbers Operations & 

Ratios as it varied by when monitoring began in fall (F), winter (W), and spring (S). 
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 Figure 2. Grade 6 math progress monitoring growth in Numbers & Operations, Algebra, and 

Numbers Operations & Ratios as it varied by when monitoring began in fall (F), winter (W), 

and spring (S) for those who scored on average, one standard deviation (SD) above, and one 

standard deviation (SD) below on the corresponding fall focal point benchmark measure. 

 

8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 

8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 8 

9 

10 

11 

12 

13 

14 
S

ep
 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 

8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 8 

9 

10 

11 

12 

13 

14 

S
ep

 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 8 

9 

10 

11 

12 

13 

14 
S

ep
 

O
ct

 

N
o

v
 

D
ec

 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 



TEACHER DECISION-MAKING 34 

Appendix 1: Equations 

 

 

The equations below provide an overview of our a priori unconditional and conditional 

models, as well as the final models developed through the model building process.   

 

Model 1: Full a priori Unconditional Model 

                                                          
                                                           
                                              

 

            
             

            
             

            
            
              
            
            
 

 

Model 2: Final Unconditional Model 
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Model 3: Final a priori Conditional Model Including Both Covariates: 

                                                         
                                                        
                                               

 

                                                        
                                                          

                                                         
                                                         
                                                         
                                                         
                                                            
                                                         
                                                         
 

 

Model 4: Final Conditional Model 
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