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Abstract 

Value-added models (VAMs) attempt to isolate the contribution of teachers to students’ 

achievement by conditioning current achievement on previous achievement. VAMs continue to 

gain popularity in large-scale accountability applications as one component of teacher evaluation 

systems. Generally, teacher effectiveness estimates are obtained from VAMs on an annual basis. 

Cohort variability, or year-to-year fluctuations in the student samples, therefore poses a threat to 

the validity of VAMs. The purpose of this paper was to explore the extent to which students’ 

initial achievement and rate of growth during the school year varied as a function of the specific 

academic year. Overall, we found that students’ within-year growth depended on Academic Year, 

independent of student demographics or classroom-level nesting. Implications for VAMs are 

discussed. 
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Exploring the Impact of Cohort Variability on Teacher Effects 

 Teachers impact on students’ academic achievement is of considerable interest to a broad 

array of stakeholders, including parents, district administrators, and educational policy makers. 

Perhaps unsurprisingly, a wealth of previous research has attempted to isolate the “teacher 

effect” in the variance among student test scores (e.g., Chetty, Friedman, & Rockoff, 2014; 

Hanushek, Kain, O'Brien, & Rivkin, 2005; Heck, 2009; Kane, McCaffrey, Miller, & Staiger, 

2013; Kane, Rockoff, & Staiger, 2008; Kane & Staiger, 2008; Koedel & Betts, 2007; 

Konstantopoulos & Chung, 2011; Nye, Konstantopoulos, & Hedges, 2004; Palardy & 

Rumberger, 2008; Rockoff, 2004). The statistical models used to estimate teacher effects, 

referred to generally as value-added models, or VAMs, vary considerably (see McCaffrey, 

Lockwood, Koretz, Louis, & Hamilton, 2004). In operational use, however, two models 

dominate: the student growth percentiles model (SGP; Betebenner, 2011) and the educational 

value-added assessment system (EVAAS; see Sanders & Horn, 1994; Wright, White, Sanders, & 

Rivers, 2010). Regardless of the specific model applied, VAMs provide estimates of teacher 

effectiveness based on the deviation of the mean classroom achievement from the overall sample 

mean achievement. “Achievement” is defined broadly, and can mean different things based on 

the specific study or model applied. Both the SGP and EVAAS models condition the current 

year’s status (on the state test) on the previous years’ status. The teacher effect is then defined as 

the average classroom-level deviation from the expected and observed achievement. 

VAMs originated in the econometrics literature, with Hanushek (1971) applying models 

as early as the 1970s. The past decade, however, has seen an explosion in the quantity of 

research on teacher effects, with the past five years being particularly productive. At the time of 

this writing, a quick Google Scholar search revealed 192,000 records for the search terms 
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“teacher effectiveness” since 2010. The enormous growth in research was prompted, at least in 

part, by federal legislation. In 2009, the United States Department of Education (USED) 

announced the Race to the Top (RTT) grant, a $4.35 billion dollar competitive grant that placed 

considerable emphasis on evaluating educator effectiveness (USED, 2009). The RTT grant was 

followed by a federal waiver, offering flexibility relative to the requirements of the No Child Left 

Behind Act  (NCLB, 2002) “in exchange for rigorous and comprehensive State-developed plans 

designed to improve educational outcomes for all students” (USED, 2013, para 1). The state 

plans were required to “link teacher, principal, and student data and provide that information to 

educators to improve their practices”(USED, 2011, para 7). To date, 43 states, the District of 

Columbia and Puerto Rico have been approved for such a waiver (United States Department of 

Education, 2015), with many using VAMs as one component of educator evaluations.  

It is important to note that VAMs can be used for many different purposes, including 

research purposes and, perhaps, as a formative diagnostic check for district personnel 

(McCaffrey, Lockwood, Koretz, & Hamilton, 2003). Large-scale policy applications of VAMs, 

however, are in many ways restricted. For example, datasets are limited to include only state test 

scores, collected annually. Further, there is generally a desire to calculate estimates on an annual 

basis (Hull, 2013). This is problematic considering McCaffrey, Sass, Lockwood, and Mihaly 

(2009) found teacher effect estimates calculated during one year correlated with effects 

calculated the following year at only 0.2-0.5 for elementary school teachers, and 0.3-0.7 for 

middle school teachers. While some degree of year-to-year variability would be expected, these 

results suggest the effects may be highly unstable. Ballou (2005) found similar results, with 

roughly 30% of teachers estimated as being in the bottom quartile the first year moving to one of 

the top two quartiles the following year. The reverse was also true; approximately 25% of 
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teachers who were in the top quartile during the first year fell to one of the bottom two quartiles 

in the second year.  Both Ballou and McCaffrey et al. note that averaging performance over 

multiple years increased the stability of estimates. 

Year-to-year variability in students’ achievement may occur for multiple reasons outside 

of the specific teacher instructing the student, which may be part of the reason teacher effects 

have been found to be unstable. For example, district- or school-level policies, reform efforts, or 

leaders may have indirect effects on students’ achievement beyond the individual teacher. 

Annual changes in the classroom or school student composition have also been shown to have a 

substantial impact on school effect estimates (Kane & Staiger, 2002; Linn & Haug, 2002), and 

the impact is likely to be greater at the classroom-level given the reduced sample size. Averaging 

effects across multiple years may result in more stable estimates in part because the estimate 

essentially becomes averaged over multiple years of external factors and samples of students. 

Classroom composition and interpersonal dynamics have also been shown to significantly relate 

to student achievement (i.e., peer effects; Hanushek, Kain, Markman, & Rivkin, 2003; Kang, 

2007). Each school year, teachers are charged with instructing new groups of students with 

different dynamics and challenges, both academically and behaviorally. In some years, teachers 

may have to spend a substantial amount of time dedicated to classroom management issues, at 

the expense of academics, while in other years teachers may spend relatively little time on such 

issues.  

We refer globally to the issue of year-to-year variability in students’ achievement beyond 

the teacher effect as “cohort effects”. This label is intended to be general, and not interpreted as 

purely “of the students” (i.e., cohort effects may be the result of a policy change). Because of the 

desire within large-scale policy applications to calculate estimates of teacher effects on an annual 
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basis (see Hull, 2013), cohort effects cannot be accounted for, which introduces a potential  

source of bias. Many have questioned the validity of VAMs for producing unbiased, causal 

estimates of teacher effectiveness (American Statistical Association, 2014; Braun, 2005; 

McCaffrey, Lockwood, Mariano, & Setodji, 2005; Rothstein, 2010). Proponents argue that when 

prior achievement is used as a control variable in the model the classroom-level “intake” is 

essentially equated. The resulting models can then provide unbiased causal estimates of teachers’ 

impact on students’ achievement, it is argued, by evaluating student gains (Chetty et al., 2014). 

However, if peer effects, policy changes, or other factors influence student achievement, each 

annual cohort of students may exhibit different rates of growth during the school year. In this 

case, cohort variability would bias estimates of teacher effectiveness even if differences between 

classrooms in students’ initial achievement were statistically indistinguishable. 

The purpose of this paper was to explore the extent to which differences in students' 

reading and math achievement were attributable to year-to-year changes in the sample of 

students beyond classroom-level nesting or student demographics. We fit within-year growth 

models to five years of data collected during the fall, winter, and spring of the school year in 

Grades 3-5 in reading and math in one large school district located in the southwestern United 

States. We explored the extent to which Academic Year (i.e., cohort) related to students’ initial 

achievement and rate of growth in each grade. We compared the fit of competing models 

representing three alternative hypotheses: (1) Academic Year does not relate to students’ 

achievement beyond classroom-level nesting and student demographic variables; (2) Academic 

Year relates to students’ initial achievement, but not their rate of growth; and (3) Academic Year 

relates to both students’ initial achievement and their subsequent rate of growth.  

Method 
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Sample and Measures 

 The reading and mathematics portion of the Measures of Academic Progress (MAP) were 

used in this study. The MAP is an untimed computerized adaptive interim assessment that was 

administered seasonally (fall, winter, and spring), with students being presented different items 

conditional on their estimated ability level. Items are selected so the conditional probability of 

students correctly responding to items is approximately .5, maximizing information relative to 

the latent trait (Wang, McCall, Jiao, & Harris, 2013). The adaptive algorithm results in 

consistently higher test information and lower standard errors across a wide range of student 

abilities (NWEA, 2011). The tests include 50 multiple-choice items with 4 or 5 response options.  

 All items on the MAP were calibrated on a common, vertical scale, using a Rasch model 

(NWEA, 2011). Scores were reported on a transformed logit scale, called a Rasch unit, or RIT 

scale (RIT = 𝜃 ∗ 10 + 200). The developers report the equivalent of alternate form reliability 

for the MAP ranging from .705 to .914, while the equivalent of test-retest reliability ranged from 

.703 to 925 (NWEA, 2011). The marginal reliability (Samejima, 1977, 1994), which is 

interpreted similarly to coefficient alpha, ranged from .946 to .958. The bivariate correlation 

between MAP and state test performance when taken at approximately the same time (concurrent 

validity) ranged from 0.635 to 0.878 across states. The correlation between MAP taken at an 

earlier time and state test performance (predictive validity) ranged from 0.583 to 0.868 across 

states.  

Five years of data were available in each of Grades 3-5, collected across the 2008-2009 to 

2012-2013 school years. The total sample included ~7,000 students per grade, with 

approximately 1,350-1,400 students in each year. An outline of the data structure is displayed in 

Figure 1. Note that each grade was analyzed separately, and included five years of data. There 
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was considerable overlap between grades in student cohorts. As displayed in the figure, three 

cohorts of students were represented in each analysis. Grades 3 and 4 and Grades 4 and 5 each 

had one additional cohort of students that overlapped - those who matriculated from Grades 3 to 

4 from 2011-12 to 2012-13, and students who matriculated from Grades 4 to 5 from 2008-09 to 

2009-10. Each of Grades 3 and 5 had one cohort of students who were not in common with any 

other analysis. In sum, Grades 3 and 4 and Grades 4 and 5 each shared 4 cohorts of students, 

while Grades 3 and 5 shared 3 cohorts of students. 

Classrooms with fewer than 16 students at any point in the study were excluded to ensure 

adequate variance partitioning between student and classroom factors. These numbers are similar 

to those used in previous research (McCaffrey et al., 2009), and by states adopting teacher 

growth models for accountability purposes (American Institutes for Research, 2011). Means and 

standard deviations for each time point and cohort for reading and math are displayed in Table 1. 

A total of 131 teachers with at least 16 students were represented in Grade 3, with 111 in Grade 

4, and 112 at Grade 5. The average class size was approximately 23 students in Grade 3 and 27 

students at Grades 4 and 5.  

Analyses 

 Our primary analyses were three-level linear growth models for each grade and subject 

across the seasonal time points. The assessment windows for each seasonal time point were quite 

broad (~6 weeks). We accounted for the variation by coding Time relative to the specific date the 

measures were administered. Time was coded in months, in decimal form, such that the 

coefficient could be interpreted as “monthly growth”, but accounted for the specific number of 

days between assessments. The intercept was centered on the first day of the school year for each 
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cohort of students, and represented a backward projection of their initial achievement. An 

unconditional growth model was fit first as follows 

𝑌!"# = 𝜋!!" + 𝜋!!"𝑀𝑜𝑛𝑡ℎ𝑠!"# + 𝑒!"# (1a) 

𝜋!!" = 𝛽!!! + 𝑟!!" 
𝜋!!" = 𝛽!"! + 𝑟!!" 

(1b) 

𝛽!!! = 𝛾!!! + 𝑢!!! 
𝛽!"! = 𝛾!"" + 𝑢!"! 

 
(1c) 

where 𝑌!"# represents the MAP assessment, either reading or math, at time t for student i nested 

in classroom j. The 𝜋!!" and 𝜋!!" terms represent the estimated intercept and slope for student i. 

The residual term, 𝑒!"#, represents variance not accounted for by the model and is assumed 

normally distributed with a mean of zero and variance 𝜎!. Equation 1a represents the within-

student portion of the model (Level 1). Equations 1b and 1c represent the between-student and 

between-classrooms portion of the model (Levels 2 and 3, respectively). The 𝛽!!! and 𝛽!"! terms 

represent the average student-level initial achievement and growth slope, respectively, while 𝑟!!" 

and 𝑟!!" represent random student deviations around the average intercept and growth slope, 

respectively. Similarly, the 𝛾!!! and 𝛾!"" terms represent the average classroom initial 

achievement and growth, respectively, while the 𝑢!!! and 𝑢!"! terms represent individual 

classroom deviations around the averages. Both the student- and classroom-level random effects 

were assumed normally distributed with a mean of zero and an unstructured covariance matrix. 

Following the unconditional model, a demographic-conditional model was estimated 

where student demographics were entered as fixed-effects predictors of students’ initial 

achievement and rate of growth. Demographic variables included dummy-coded vectors of 

whether the student was male, actively enrolled in an English language learner program (ELL: 

Active), being monitored for their English language skills (ELL: Monitor), received special 
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education services (SPED), were eligible for free or reduced price lunch (FRL), were of 

Hispanic/Latino ethnicity, or were of non-Hispanic/Latino and non-White ethnicity. The 

intercept thus represented White female students receiving general education instruction who 

were not enrolled in an ELL program and were not FRL eligible. Following the demographic-

conditional model, Academic Year was entered as an effect-coded predictor of students’ 

intercepts. Coefficients for specific cohorts of students therefore represented the difference 

between the average initial achievement for students within the specific academic year and the 

weighted grand mean (i.e., the mean of the group means). The weighted grand mean reasonably 

approximated the true grand mean for the reference group, given that the number of students 

within each academic year was roughly equivalent (see Table 1). Finally, the full model was 

estimated by including Academic Year as a predictor of students’ rate of growth within the year. 

We used multimodel inference when comparing competing models (Burnham & 

Anderson, 2004). Specifically, our model building strategy explicitly tested whether Academic 

Year contributed to the model as a predictor of students’ initial achievement after controlling for 

student demographic variables and classroom level nesting (Hypothesis 1 versus Hypothesis 2). 

Following this model, we tested whether Academic Year contributed to the model as a predictor 

of students’ rate of growth beyond the effect on the intercept or student demographic variables 

and classroom-level nesting (Hypothesis 2 versus Hypothesis 3). Akaike’s information criterion 

(AIC) and the Bayesian information criterion (BIC) were primarily used when selecting between 

competing models. We used general rules of thumb outlined by Burnham and Anderson to select 

a best-fitting model. Specifically, when the difference between competing models was less than 

two, we concluded there was little evidence to support one model over the other. Differences 

between four and seven indicated “considerably less support” (p. 271) for the model with the 



COHORT VARIABILITY AND TEACHER EFFECTS  11 

higher value, while differences greater than ten provided “essentially no support” (p. 271) for the 

model with the higher value. BIC tends to be the more conservative indicator (i.e., includes a 

greater penalty for the number of estimated parameters). We also used a 𝜒! test to evaluate 

differences in the model deviance, which essentially became the moderator in the case of 

conflicting evidence between AIC/BIC.   

Results 

 In the presentation of our results, we focus primarily on model selection. We briefly 

discuss the effect of all demographic variables, but focus primarily on the effect of including 

Academic Year in the model.  

Model Selection 

 Fit indices for our competing models are displayed in Table 2 for math and in Table 3 for 

reading. The inclusion of student demographic variables universally resulted in a better fit to the 

data over the unconditional model, as indicated by AIC, BIC, and the 𝜒! test of the change in the 

model deviance. Generally, AIC indicated that including Academic Year as a predictor of 

students’ intercepts increased model fit modestly (i.e., < 10). The exceptions were in Grade 5, 

where AIC stayed at the same estimated value in reading and decreased by 1 point in math. By 

contrast, the BIC increased with the inclusion of Academic Year as a predictor of the intercept 

across all models. The 𝜒! test of the model deviance revealed similar evidence to AIC, with the 

deviance reducing significantly (p < .05) for all models outside of Grade 5 for both reading and 

math. Overall, the AIC decreased by 0 to 9 points, while BIC universally increased (range = 24 

to 31 points). Because the 𝜒! tests provided similar results to AIC, we concluded that the 

inclusion of Academic Year as a predictor of students’ intercepts moderately improved model fit 

after accounting for student demographics. 
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 Following the evaluation of Academic Year as a predictor of students’ intercepts, we 

estimated the full model, which included all student demographics and Academic Year as a 

predictor of students’ intercepts and slopes. The AIC universally indicated that the full model 

displayed the best fit to the data, with all values being at least 10 points lower than any 

alternative model, with the exception of Grade 5 Reading, which was 8 points lower than the 

next best fitting model. The BIC was generally reduced, relative to the model with Academic 

Year as a predictor of students’ intercepts only, with the exceptions being Grade 3, where the 

estimate stayed the same in math and decreased by 1 point in reading, and Grade 5 Reading, 

where the estimate increased by 24 points. All other models were at least 10 points lower than 

the model with Academic Year on the intercept along. However, the lowest BIC value remained 

the demographic-conditional model across all models except Grade 4 Math, for which the full 

model had the best fit to the data. The 𝜒! tests of model deviance were universally significant, 

relative to the model with only Academic Year as a predictor of students’ intercepts. Thus, while 

it seemed clear that the full model was a better fit to the data than the model with Academic Year 

as a predictor of intercepts only, there was conflicting evidence between AIC and BIC as to 

which model fit the data best overall, with AIC universally indicating the full model and BIC 

generally indicating the demographic-conditional model.  

While not reported in Tables 2 and 3, additional 𝜒! tests of the model deviance were 

conducted across all models in which the lowest AIC was estimated for the full model, but the 

lowest BIC value was estimated for the demographic-conditional model. Across all grades and 

models, 𝜒! indicated the full model displayed the best fit to the data. Given the accumulation of 

evidence across model fit indices, we concluded that the full models displayed the best fit to the 

data across all grades and both subjects. 
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Parameter Estimates 

 Tables 4 and 5 display Academic Year parameter estimates for math and reading, 

respectively, as well as variance components for each of the selected models. To keep the tables 

of a manageable size, parameter estimates for demographic variables are not displayed1, but 

rather are discussed briefly below. Tables 4 and 5 present only the final two models: Academic 

Year as a predictor of students’ intercepts only, and Academic Year as a predictor of students’ 

intercepts and slopes. When interpreting Tables 4 and 5, it is important to keep in mind the data 

structure (see Figure 1). For example, the coefficient for 2009 in Grade 3 represents largely the 

same group of students (outside of attrition) as the coefficient for 2010 in Grade 4. 

 Across all grades and subjects, students who were Active ELLs, FRL eligible, receiving 

SPED services, of Hispanic/Latino ethnicity, and/or of non-Hispanic/Latino and non-White 

ethnicity, had a significantly lower initial achievement than the reference group (p < .05). Male 

students were universally higher in initial math achievement, and lower in initial reading 

achievement (although the coefficient for reading at Grade 4 was not significant, p = .08). 

Students who had exited the district ELL program and were on monitor status had an initial 

achievement approximately 1 to 2 points higher in math and reading than the reference group, 

with the exception of Grade 5 Reading, which was not significantly different. Patterns for growth 

were less systematic. Active ELLs progressed significantly faster than the reference group in 

Reading in both Grades 4 and 5, while ELLs on monitor status progressed significantly faster in 

Grades 4 and 5 Math. FRL-eligible students progressed significantly faster in Grade 4 Reading, 

and significantly slower in Grade 5 math. Students receiving SPED services progressed 

significantly slower in Grades 4 and 5 Math. Male students progressed significantly faster in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Please contact the lead author for complete parameter estimates. 
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Grade 3 Reading and Math, Grade 4 Math, and Grade 5 Reading. All other coefficients were not 

significantly different from the reference group.  

 In terms of cohort effects (see Tables 4 and 5), Academic Year was a sporadically 

significant predictor of students’ intercepts, but was nearly a universally significant predictor of 

students’ slopes in math across Grades 3-5 (with the coefficient for 2010 in Grade 4 and 2009 in 

Grade 5 being the exceptions). The coefficients all appeared relatively small; however, this was 

largely a function of the scale being monthly growth. For example, in Grade 4 the difference 

between the groups who displayed the lowest and highest growth within a given year (2009 and 

2013) was 0.51 points per month, or roughly 4.9 points of growth over the course of the school 

year, independent of student demographics or classroom-level nesting. This difference 

corresponded to slightly more than 1/3 of a standard deviation on the Grade 4 spring measure 

when aggregated across cohorts. There were no discernable patterns to effects across grades 

within a given academic year. 

In reading, the effect of Academic Year on the intercept was significant for between 1 and 

3 student groups, depending on the specific model, while between 2 and 3 student groups 

progressed at significantly different rates. The results in reading were thus not as consistent as 

math, but students did still progress at different rates. For example, in Grade 3, the difference 

between students in 2009 and 2011 was 0.29 points of growth per month, or approximately 2.77 

points over the course of the school year (0.22 standard deviations on the spring assessment).  

Discussion 

 The purpose of this paper was to explore the extent to which students’ initial achievement 

and rate of growth during the school year varied from one school year to the next, independent of 

classroom-level nesting or student demographics. Overall, models that included Academic Year 
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as a predictor of students’ intercepts generally displayed better fit to the data than models that 

included only student demographic variables. However, when Academic Year was entered as a 

predictor of students’ growth within the school year, the model fit indices nearly universally 

improved. In math, all but two coefficients across grades for the effect of Academic Year on 

students’ growth were significantly different than the weighted grand mean. In other words, each 

group of students, from one year to the next, progressed at significantly different rates, even after 

accounting for student demographics and the classroom in which the student was enrolled. In 

reading, the year-to-year variation in students’ rate of growth was lower, with between two and 

three groups progressing at significantly different rates than the weighted grand mean.  

 There are many potential reasons that students’ may progress at significantly different 

rates between school years, such as sampling variability (Kane & Staiger, 2002; Linn & Haug, 

2002), changes in school- or district-wide leadership or policy (Heck & Hallinger, 2009), 

classroom dynamics (Hanushek et al., 2003), or changes in school- or district-wide reform efforts 

(e.g., changes to curriculum, implementation of response to intervention [RTI] and/or positive 

behavioral interventions and supports [PBIS], etc.). In our study, we did not find consistent 

effects across grades within a specific school year relative to growth. This lack of consistency 

implies that the differences in within-year growth were likely due primarily to sampling 

variability, rather than other factors. However, it is also possible that these external factors (e.g., 

leadership, reform efforts, etc.) had inconsistent effects across grades (e.g., large effects in Grade 

3 versus small effects in Grade 5). In this case, the external factors may have influenced the 

observed differences in students’ within-year growth between academic years, but attributing 

differences to specific factors would be difficult.  
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Regardless of the specific reasons that students within-year growth may differ between 

academic years, the results of this study suggest that students within a specific grade may 

progress at different rates depending on the specific school year. The variability in within-year 

growth rates likely impacts estimates of the value-added by teachers to students’ achievement, 

and future research should examine this relation explicitly with more typical models used in 

high-stakes accountability policies. Controlling for classroom or school intake, however, as is the 

goal of many VAMs (Timmermans, Doolaard, & de Wolf, 2011), may be insufficient. If VAM 

estimates are calculated annually, then the estimated effects will depend, in part, upon the 

specific group of students within the specified grade during the specified year, given that within-

year growth depends upon these specifics even after controlling for classroom-level nesting.  

Limitations and Future Directions 

 This study utilized a large extant dataset, which inherently comes with certain limitations. 

For example, while we can speculate on possible reasons why students progressed at different 

rates during different academic years, we cannot state with any certainty why the differences 

occurred. While sampling variability appeared to be the primary mechanism, given the lack of 

consistent effects within an academic year across grades, it is likely that many unmodeled 

phenomena were also at work. School systems are complicated organizational units, with a 

myriad of factors potentially relating to students achievement (see Scheerens & Bosker, 1997). 

Yet, when viewed through the lens of VAMs and high-stakes accountability policies, it is 

perhaps less important to explain why students progress at different rates depending on the 

specific school, than it is to understand the potential repercussions on the accuracy of VAM 

estimates. 
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 The model applied in this study is not generalizable to VAMs applied for high-stakes 

accountability purposes (e.g., SGP or EVAAS; Betebenner, 2011; Wright et al., 2010), because 

students growth within the academic school year was modeled, rather than between-year gains. 

Future research should explore how VAM estimates change when multiple cohorts of student 

gains are modeled simultaneously, with a cohort indicator, as opposed to being modeled 

annually. The former method would account for the year-to-year fluctuations in students’ growth 

observed here, while the latter would not. If the VAM estimates were sufficiently similar, then 

annual estimates may be feasible. However, this seems unlikely given the instability of estimates 

observed between years in previous research (Ballou, 2005; McCaffrey et al., 2009). This 

method would also provide insight into the proportion of instability that is attributable to cohort 

effects, as opposed to other factors. 

Conclusions 

 Attributing gains in student learning to teachers is a difficult proposition. Schools are not 

laboratory settings where all variables can be tightly controlled, with students randomly assigned 

to teachers and teachers randomly assigned to schools. Analysts employing VAMs attempt to 

isolate the effect of teachers on students’ current year achievement by controlling for prior 

achievement. Yet, the results of this study suggest that even if prior achievement is controlled, 

students may progress at different rates during the school year depending on the specific 

academic year, independent of demographic variables and the classrooms in which students are 

enrolled. VAMs continue to grow in popularity for use within high-stakes statewide 

accountability systems. The practical repercussions of these models are substantial. It is critical 

that VAMs continue to be vetted so that a better understanding of what they can and cannot 

measure becomes understood. It is equally important that the results of these investigations be 
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shared with educators and policy-makers who are using the models. If the limitations of the 

models are better understood then the validity of model-based inferences is likely to be 

increased. 
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Table 1 
Means and Standard Deviations 

Time point 

Cohort 
2008-09 

 (n = 1,433) 
2009-10 

 (n = 1,469) 
2010-11 

 (n = 1,331) 
2011-12 

(n = 1,323) 
2012-13 

 (n = 1,354) 
M SD M SD M SD M SD M SD 

Math           
Grade 3           

Fall 189.03 11.26 189.58 11.23 189.47 11.14 189.49 11.53 189.55 11.27 
Winter 194.71 11.03 195.97 11.2 195.62 11.41 196.42 11.49 197.38 11.16 
Spring 201.46 11.79 202.77 11.53 202.9 12.09 203.93 12.17 204.94 11.48 

Grade 4           
Fall 200.55 11.80 201.05 12.47 200.62 12.07 201.16 11.82 200.24 11.79 
Winter 204.77 12.38 205.36 12.72 205.65 12.73 206.73 12.81 204.92 11.94 
Spring 210.32 13.40 212.33 13.65 212.44 13.68 215.36 13.9 209.84 13.27 

Grade 5           
Fall 209.87 12.92 210.05 13.25 209.82 13.35 209.43 12.78 209.51 13.28 
Winter 215.13 14.18 215.76 13.79 216.78 14.72 214.54 13.59 213.29 13.82 
Spring 221.52 15.39 222.01 15.36 222.76 15.26 220.38 15.06 219.02 14.67 

Reading           
Grade 3           

Fall 187.46 14.15 187.42 14.35 187.67 13.33 187.74 14.65 186.42 15.13 
Winter 192.84 13.47 193.62 14.2 193.48 13.25 193.96 14.17 194.39 13.64 
Spring 197.13 13.57 199.14 13.61 198.73 13.12 198.99 14.11 199.41 13.57 

Grade 4           
Fall 197.03 13.98 197.63 14.55 196.87 14.78 196.85 14.5 197.74 14.4 
Winter 201.62 13.6 201.43 13.82 201.12 13.66 201.94 13.7 201.05 13.72 
Spring 205.03 14.22 206.04 13.54 204.96 14.18 207.01 13.64 204.97 13.78 

Grade 5           
Fall 204.99 13.58 205.46 14.25 203.07 14.12 204.39 14.28 204.14 14.03 
Winter 209.00 13.38 208.81 13.9 208.11 13.29 208.49 13.71 207.63 13.71 
Spring 212.86 13.43 212.51 13.99 211.7 13.16 211.99 13.84 211.38 13.24 
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Table 2 
Model Fit Indices: Math 

Grade Model DF AIC BIC Deviance 𝜒! p 

3 

Unconditional 9 126025 126095 126007   

Demos 23 122035 122215 121989 4017.80 0.00 

Intercept on cohort 27 122028 122239 121974 15.02 0.00 

Full 31 121997 122239 121935 39.23 0.00 

4 

Unconditional 9 128423 128494 128405   

Demos 23 122476 122656 122430 5975.00 0.00 

Intercept on cohort 27 122472 122682 122418 12.36 0.01 

Full 31 122327 122569 122265 152.80 0.00 

5 

Unconditional 9 128887 128958 128869   

Demos 23 123721 123900 123675 5194.00 0.00 

Intercept on cohort 27 123720 123930 123666 9.19 0.06 

Full 31 123673 123915 123611 54.68 0.00 

Note. Values for the 𝜒! test relate to the difference between the model deviance between 
the corresponding model and the preceding model (i.e., the model one row above). 
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Table 3 
Model Fit Indices: Reading 

Grade Model DF AIC BIC Deviance 𝜒! p 

3 

Unconditional 9 134701 134771 134683   

Demos 23 130026 130205 129980 4703.00 0.00 

Intercept on cohort 27 130019 130230 129965 14.37 0.01 

Full 31 129987 130229 129925 40.12 0.00 

4 

Unconditional 9 134526 134596 134508   

Demos 23 127598 127777 127552 6956.20 0.00 

Intercept on cohort 27 127589 127800 127535 16.25 0.00 

Full 31 127545 127787 127483 52.28 0.00 

5 

Unconditional 9 131789 131859 131771   

Demos 23 125702 125881 125656 6114.90 0.00 

Intercept on cohort 27 125702 125912 125648 8.15 0.09 

Full 31 125694 125936 125632 15.74 0.00 

Note. Values for the 𝜒! test relate to the difference between the model deviance between 
the corresponding model and the preceding model (i.e., the model one row above). 
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Table 4 
Multilevel Growth Model Results, Cohort Parameter Estimates: Math 

Fixed effects / 
year 

Grade 3 Grade 4 Grade 5 
Intercept Only Intercept/Slope Intercept Only Intercept/Slope Intercept Only Intercept/Slope 
Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE 

Intercept, 𝛾!!! 194.68* 0.39 194.71* 0.39 205.64* 0.44 205.66* 0.44 215.05* 0.45 215.05* 0.45 
2009, 𝛾!"! -0.70* 0.25 -0.46 0.27 -0.79* 0.27 -0.25 0.28 -0.33 0.30 -0.37 0.31 
2010, 𝛾!"! 0.37 0.25 0.72* 0.27 0.65* 0.27 0.74* 0.28 0.37 0.31 0.26 0.32 
2011, 𝛾!"! 0.68* 0.27 0.28 0.29 -0.17 0.28 0.18 0.29 -0.25 0.32 0.00 0.32 
2012, 𝛾!"! -0.40 0.25 -0.21 0.27 -0.02 0.29 -0.26 0.29 0.80* 0.33 0.62 0.33 
2013, 𝛾!"! 0.05 0.26 -0.31 0.27 0.32 0.31 -0.41 0.31 -0.59 0.30 -0.51 0.31 

Slope, 𝛽!"" 1.69* 0.04 1.68* 0.04 1.44* 0.05 1.44* 0.04 1.52* 0.04 1.53* 0.04 
2009, 𝛾!!"   -0.07* 0.03   -0.21* 0.03   0.02 0.03 
2010, 𝛾!"#   -0.09* 0.02   -0.04 0.03   0.08* 0.03 
2011, 𝛾!"#   0.12* 0.03   -0.15* 0.03   -0.18* 0.03 
2012, 𝛾!"#   -0.05* 0.02   0.09* 0.03   0.15* 0.03 
2013, 𝛾!"#   0.09* 0.02   0.30* 0.03   -0.07* 0.03 

Variance 
components Var SD Var SD Var SD Var SD Var SD Var SD 

Stu int, 𝑟!!"  74.00 8.60 74.02 8.60 77.04 8.78 76.98 8.77 98.08 9.90 98.10 9.90 
Stu slope, 𝑟!!" 0.13 0.36 0.13 0.35 0.16 0.40 0.14 0.38 0.15 0.39 0.14 0.38 
Class int, 𝑢!!! 4.23 2.06 4.03 2.01 7.22 2.69 6.81 2.61 5.80 2.41 5.79 2.41 
Class slope, 𝑢!"! 0.08 0.29 0.08 0.28 0.12 0.34 0.09 0.31 0.10 0.31 0.09 0.31 
Residual, 𝑒!"# 18.09 4.25 18.08 4.25 19.67 4.43 19.67 4.43 21.09 4.59 21.09 4.59 

Note. Only the coefficients for Cohort are presented. All models also included demographic controls. See Methods section. 
*p < .05 
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Table 5 
Multilevel Growth Model Results, Cohort Parameter Estimates: Reading 

Fixed effects / 
year 

Grade 3 Grade 4 Grade 5 
Intercept Only Intercept/Slope Intercept Only Intercept/Slope Intercept Only Intercept/Slope 
Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE 

Intercept, 𝛾!!! 196.89* 0.47 196.91* 0.46 206.34* 0.47 206.29* 0.46 213.18* 0.44 213.18* 0.44 
2009, 𝛾!"! -0.29 0.29 0.47 0.33 -0.39 0.28 -0.12 0.31 0.23 0.28 0.18 0.31 
2010, 𝛾!"! 1.05* 0.28 0.80* 0.33 0.86* 0.28 0.96* 0.32 0.53 0.29 0.91* 0.32 
2011, 𝛾!"! -0.20 0.31 -0.97* 0.35 0.50 0.29 1.02* 0.33 0.11 0.29 0.22 0.32 
2012, 𝛾!"! -0.32 0.29 -0.13 0.33 -0.62* 0.30 -0.55 0.33 -0.71* 0.31 -1.17* 0.33 
2013, 𝛾!"! -0.24 0.29 -0.17 0.34 -0.35 0.32 -1.31* 0.35 -0.17 0.28 -0.13 0.31 

Slope, 𝛽!"" 1.36* 0.04 1.35* 0.04 0.93* 0.04 0.93* 0.04 0.85* 0.04 0.85* 0.04 
2009, 𝛾!!"   -0.14* 0.03   -0.06* 0.03   0.01 0.03 
2010, 𝛾!"#   0.04 0.03   -0.02 0.03   -0.07* 0.03 
2011, 𝛾!"#   0.15* 0.03   -0.12* 0.03   -0.03 0.03 
2012, 𝛾!"#   -0.04 0.03   -0.01 0.03   0.10* 0.03 
2013, 𝛾!"#   -0.01 0.03   0.21* 0.03   -0.01 0.03 

Variance 
components Var SD Var SD Var SD Var SD Var SD Var SD 

Stu int, 𝑟!!"  114.88 10.72 114.81 10.71 101.31 10.07 101.19 10.06 99.68 9.98 99.64 9.98 
Stu slope, 𝑟!!" 0.12 0.35 0.12 0.34 0.10 0.31 0.09 0.30 0.08 0.28 0.08 0.28 
Class int, 𝑢!!! 5.04 2.24 4.57 2.14 5.65 2.38 5.57 2.36 4.12 2.03 4.08 2.02 
Class slope, 𝑢!"! 0.04 0.19 0.03 0.18 0.04 0.21 0.04 0.21 0.04 0.20 0.04 0.20 
Residual, 𝑒!"# 31.01 5.57 31.02 5.57 30.40 5.51 30.41 5.51 28.41 5.33 28.41 5.33 

Note. Only the coefficients for Cohort (year) are presented. All models also included demographic controls. See Methods section. 
*p < .05 
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Figure 1. Outline of Cohorts in each analysis. Each grade was analyzed separately, with five 
academic years in each analysis. Three cohorts of students were represented in each analysis 
(displayed with thick black border). Grades 3 and 4 and Grades 4 and 5 each shared one 
additional cohort (displayed with small double black line borders). Grades 3 and 5 each had one 
group of students who were not represented in any other analysis (displayed in italic font). 
 


